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Online workplaces such as oDesk, Amazon Mechanical Turk, and TaskRabbit have been growing in

importance over the last few years. In such markets, employers post tasks on which remote contractors work

and deliver the product of their work online. As in most online marketplaces, reputation mechanisms play

a very important role in facilitating transactions, since they instill trust and are often predictive of the

employer’s future satisfaction. However, labor markets are usually highly heterogeneous in terms of available

task categories; in such scenarios, past performance may not be an accurate signal of future performance.

To account for this natural heterogeneity, in this work, we build models that predict the performance of a

worker based on prior, category-specific feedback. Our models assume that each worker has a category-specific

quality, which is latent and not directly observable; what is observable, though, is the set of feedback ratings

of the worker and of other contractors with similar work histories. Based on this information, we provide a

series of models of increasing complexity that successfully estimate the worker’s quality. We start by building

a binomial and a multinomial model under the implicit assumption that the latent qualities of the workers

are static. Next, we remove this assumption, and we build linear dynamic systems that capture the evolution

of these latent qualities over time. We evaluate our models on a large corpus of over a million transactions

(completed tasks) from oDesk, an online labor market with hundreds of millions of dollars in transaction

volume. Our results show an improved accuracy of up to 25% compared to feedback baselines, and significant

improvement over the commonly-used collaborative filtering approach. Our study clearly illustrates that

reputation systems should present different reputation scores, depending on the context in which the worker

has been previously evaluated and the job for which the worker is applying.
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1. Introduction

In recent years, online marketplaces have experienced (and continue to experience) a

significant growth in their transaction volume.1 As significant new entrants, online labor

marketplaces, such as oDesk, Amazon Mechanical Turk, and TaskRabbit, follow this trend

as well. More precisely, statistics from oDesk, which has the largest revenue share in online

workplaces, show an exponential growth in total hours worked per week since 2004; for

2012, the company was reporting transactions of more than 500,000 hours of work time

1
http://www.statista.com/topics/871/online-shopping/
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billed per week.2 In addition, the online-worker’s annual earnings are expected to grow

from $1 billion in 2012 to $10 billion by 2020 (Agrawal et al. 2013). On a similar note,

Mechanical Turk receives hundreds of thousands of dollars worth of new jobs every day.3

A key difference between online labor markets and other marketplaces is that a work

project on the former is mainly an ‘experience good ’. This means that it’s difficult (if

not impossible) to predict the quality of the deliverable in advance (Nelson 1970). To

resolve this uncertainty, a key solution would be to implement and use reputation systems.

Reputation systems provide signals about the past performance of workers (Dellarocas

2003). Such signals are commonly predictive of the quality of users’ future performance, in

a wide variety of online communities, e.g., online reviews, ‘question and answer’ (Q&A)

communities and others (Danescu-Niculescu-Mizil et al. 2009, Liu et al. 2008b, Lu et al.

2010). Consequently, it is rational to assume that employers, who have limited knowledge of

the skills and abilities of a remote contractor, often consult the history of past transactions

to better understand whether a contractor is qualified and suitable for the task at hand.

The implicit assumption of most existing reputation systems is that the past working

history, for which a participant has been rated for, is similar to the future tasks in which

the participant will engage in. However, in many online marketplaces, the tasks that are

completed span across a variety of different categories, for example ‘Web Development’,

‘Writing & Translation’, ‘Sales & Marketing’, and so on. Such an assortment naturally

forms a highly heterogeneous workplace environment.

Given this heterogeneity, what happens when, for instance, a worker switches to a new

type of task? What happens when a contractor, with a background in web development,

decides to work on a graphic design task? What can we say regarding the possible outcome

of a programming task, for a worker with a history in technical writing? In general, are

reputations transferable across categories and predictive of future performance? How can

we estimate task affinity and use past information to best estimate expectations of future

performance?

Similar questions also apply to ‘offline’ work, which increasingly leaves traces in online

settings (e.g., through profiles on LinkedIn, or online resumes on Monster). As workers

progress in their careers, they often transition from one type of job to another (e.g., an

2
http://web.archive.org/web/20120501051827/https://www.odesk.com/info/about/

3
http://mturk-tracker.com/arrivals/
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engineer to a managerial position). Being able to understand how past performance in

one type of job signals transfers to another can significantly improve our ability to better

allocate the right workers to the right positions.

Intuitively, we can assume that employers manually check the reputation of workers

across categories, and try to ‘guess’ how these reputations are mapped to the category at

hand. A key contribution of the paper is that it allows existing rating systems to explicitly

use the type of task that is associated with past ratings. In particular, we propose a set

of predictive models that use Bayesian inference to estimate the future performance of a

user, based on category-specific past performance. We assume that the category-specific

qualities (or skills) of a user are latent and not directly observable. However, these skills are

reflected into a set of other measurable characteristics, such as employer ratings for past

projects. Based on these past ratings, we build models that are capable of connecting past

performance across categories to predict performance in a new category for which we either

have zero or very few past data points. We present models of increasing complexity, starting

with the assumption that the latent qualities are static, but then alleviate this assumption,

allowing the latent qualities to evolve with time or gained experience. To capture this

evolution, we use a linear dynamical system (Bishop et al. 2006), which provides predictions

that incorporate the dynamic behavior of latent qualities.

While our work has conceptual similarities with the task of recommender systems, our

setting is unique: The worker, who is being rated, has the flexibility of moving across

task categories, while the items that are rated in existing recommender system settings

(movies, songs, products) are static entities that do not evolve over time. Furthermore,

in recommender systems, products are identical when used by different users. In the case

of labor markets, the workers are evaluated each time in a different task posted by a

different employer, introducing multiple levels of heterogeneity (employer heterogeneity, task

heterogeneity); in our work, we attempt to directly address the issue of task heterogeneity.

Our setting is much closer to the setting of most reputation systems; the key novelty of

our work is the introduction of task types for the past ratings, something that, to the best

of our knowledge, has not been used in the past. An additional goal of our approach is to

estimate task affinities, and understand what types-of-tasks are related in terms of actual

worker performance, as this allows for better organization of the task assignments in labor

markets. Finally, our experimental evaluation compares against the existing state of the art
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in recommender and reputation systems, and illustrates the benefits of using an approach

that targets the peculiarities of labor markets.

For our experimental evaluation we use a unique dataset of real transactional oDesk data.

In particular, this dataset consists of over a million real transactions across six different

categories from the oDesk marketplace. These transactions capture histories of hundreds

of thousands of different contractors. We build and evaluate our models on this data and

clearly demonstrate how different categories are correlated with each other, and whether

past performance in a given category contains predictive information about performance in

another. We next compare our models with the existing baseline of uniformly averaging

past reputation, and we show that our models perform significantly better, providing up

to 25% improvement over the baseline in terms of mean absolute error. Furthermore, we

show evidence that our models outperform the collaborative filtering approach. Finally,

to examine the robustness of our models, we run simulations with a set of different input

distributions. The simulation results give us further confidence regarding the adaptiveness of

our models, as well as very insightful information about the performance and appropriateness

of each one of our approaches. In particular, our analysis suggests that our approaches

should be employed in scenarios where users present skewed past histories towards certain

categories/skills/types-of-tasks. To further justify the generalizability of our framework, we

present an additional empirical analysis of reputation transferability on Amazon.com. We

finally conclude that reputation schemes stand to benefit significantly if they adjust the

feedback scores of the participating users to take into account the type of task that a user is

expected to complete (or has already completed), as well as the user’s past category-specific

performance history.

Our study contributes to managerial decision-making in online and other workplaces, and

offers an analytics-based approach that can improve the design of online work marketplaces.

In particular, our analysis shows a clear and methodologically sound approach for analyzing

the correlations between different task categories, and as a result, we provide a more

accurate estimate of a worker’s performance in a new category. This information is valuable

to employers that participate in online labor markets, allowing them to make safer and

better-informed hiring decisions. On a parallel trajectory, our analysis can be also used

by these marketplaces as a guideline to reduce friction (Brynjolfsson and Smith 2000), by

recommending to contractors to apply for tasks that are seemingly out of their scope, but
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for which these contractors are highly likely to provide successful outcomes. Furthermore,

the increased availability of digital footprints for offline work allows our approaches to be

applicable in offline work as well: job transitions are readily available from online resume

sites, and signals about work performance are increasingly available (e.g., promotions within

the same job, or when moving to a different job). Our framework can be potentially applied

in such settings, offering the benefits of our approach in the offline labor market as well.

2. Related work

Related work can be separated into two streams: studies that focus on online reputation

systems and studies that explore online labor markets.

2.1. Research in Online Reputation Systems

There are many studies of online reputation mechanisms and how such mechanisms resolve

various information asymmetries (Dellarocas 2003, 2006). Common reputation systems use

the average of past performance across all transactions, often adding a time-discounting

mechanism, or weighting feedback ratings by the size of the transaction. In our work, we

explore how past, task-specific reputation can be used to predict future performance on

different types of tasks. We are not aware of other studies that compartmentalize the past

reputation of an agent in a market, in order to better understand the ability of a worker to

carry out a specific type of task.

Many significant studies in the past focused on the effectiveness of reputation systems.

For instance, Bolton et al. (2004) compared trading in an online marketplace with feedback,

to a market without feedback, and to a market in which the same people interact with one

another repeatedly (partners market). They concluded that (1) online feedback increases

transactions’ efficacy and (2) that online feedback and one’s own past experience do not

perfectly overlap in the feedback market. Standifird (2001) studied the importance of a

seller’s reputational rating and showed that positive ratings are mildly influential compared

to negative ratings ,which are strongly influential and detrimental. Furthermore, Resnick

et al. (2006) conducted a randomized experiment to study the value of reputation on eBay,

and found that buyers had an 8.1% increase in their willingness to pay, in order to buy from

a high reputatable, established seller. Bakos and Dellarocas (2011) studied litigation and

reputation both as substitutes and as complements, and they found that only when legal

costs are too high or damage awards are too low, reputation mechanisms improve efficiency.



Authors’ names blinded for peer review

6 Article submitted to ; manuscript no. MS-13-01388

Finally, Aperjis and Johari (2010) studied the value of the seller’s ratings within some fixed

windows of past transactions, and they showed that mechanisms that use information from

a larger number of past transactions tend to provide incentives for patient sellers to be

more truthful, but for higher quality sellers to be less truthful.

Two other major streams of research that relate to our work (and to reputation systems,

in a more general sense) are research on helpfulness of online reviews and research on

community question answering (CQA). Most of the studies on online reviews focus on using

different review characteristics to estimate the review helpfulness. For example, Kim et al.

(2006) use review length, unigrams and product rating; O’Mahony and Smyth (2010) use

readability tests; Otterbacher and Arbor (2009) use the topical relevancy, the believability,

and the objectivity of the review; Danescu-Niculescu-Mizil et al. (2009) use the difference

of a product evaluation with other evaluations of the same product. Furthermore, Liu et al.

(2008b) take into account the reviewer’s expertise, the writing style of the review, as well

as the timeliness of the review. Lu et al. (2010) include in their predictive feature sets

information about the author’s identities and their social networks. Lappas and Gunopoulos

(2010) propose a framework for capturing the overall consensus of the reviewers, on a

given subset of item attributes. Tsaparas et al. (2011) propose algorithms for selecting a

comprehensive set of a few, high-quality reviews that cover many different aspects of the

reviewed item. Ghose and Ipeirotis (2011) examine how the overall history of the reviewer

(along with other textual features of a review, such as its subjectivity and readability levels)

affects the helpfulness of a review. Our proposed approach, instead of just using the average

past reputation of a user, also exploits the correlation among given topic categories and

provides more accurate quality estimates.

Our work is orthogonal and complementary to these efforts: in many settings (e.g., online

labor markets), we cannot extract features of the past submitted work, and in settings

where we can, these extra features are orthogonal to the idea of creating category-specific

features.

As we mentioned before, a lot of research focuses on predicting the quality of online answers

in ‘Community Question Answering’ platforms. Towards this direction (i.e., identifying high

quality answers), Jeon et al. (2006) propose a framework that uses non-textual features

such as click counts, Agichtein et al. (2008) present a model that exploits community

feedback (such as links between items or explicit ratings), Bian et al. (2009) develop a
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semi-supervised coupled mutual reinforcement frameworkm and Suryanto et al. (2009)

propose a model that considers both the answer’s quality and relevance. In addition, Liu

et al. (2008a) present a prediction model of customers’ satisfaction in the ‘Yahoo! Answers’

platform. Shah and Pomerantz (2010) use Amazon Mechanical Turk workers to label the

quality of the answers, and then, they train classifiers that select the highest quality answers.

Our work is conceptually different from all these previous studies because it focuses on the

associations among different categories: none of these works studied how user reputation in

CQA platforms is transferable across different topic-categories.

Finally, Adamic et al. (2008) cluster forum categories according to content characteristics

and study patterns of interactions among users. In particular, Adamic et al. relate categories

based on user participation and estimate the user’s interests’ entropy values. Using these

values, they observe that lower entropy is correlated with receiving higher answer ratings,

but only for categories where factual expertise is required. Their work deviates from ours

in that it does not use prior, category-specific quality to predict the current user quality, as

well as in the fact that the authors correlate categories based on user replies and not on

how user participation is associated with the quality of completed tasks.

2.2. Research in Online Labor Markets

Current research in Online Labor Markets (OLMs) spans across a variety of problems.

Horton (2010) explores market creators’ choices of price structure, price level, and investment

in platforms. He further discusses possible productivity and welfare implications that these

markets can have. Horton and Chilton (2010) present a model of workers supplying labor

to paid crowdsourcing. They find that workers work less when the pay is lower, but they

do not work less when the task is more time-consuming.

A different stream of work studies the validity of behavioral experiments in these

markets. Rand (2012) discusses how Mechanical Turk can be used as a tool for behavioral

experimentation. Similarly, Horton et al. (2011) show that online experiments can be

just as valid (both internally and externally) as laboratory field experiments. In addition,

Berinsky et al. (2012) assess the internal and external validity of experiments performed

using Mechanical Turk.

In a different direction, a lot of work focuses on incentivizing workers as well as finding

ways to manage the quality of their outcomes. In particular, Shaw et al. (2011) ran an

experiment on Mechanical Turk to measure the effectiveness of social and financial incentive
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schemes on outcome quality. One of their main findings was that when workers had to think

about responses of their peers, combined with financial incentives, they provided higher

quality results. Mason and Watts (2010) studied the effect of compensation on performance

in the context of two experiments conducted on AMT, and found that increased financial

incentives increase the quantity but not the quality of work performed by participants.

They also observed an anchoring effect, where workers who were paid more also perceived

the value of their work to be greater, and thus were no more motivated than workers who

were paid less. Furthermore, Chandler and Horton (2011) ran a natural field experiment on

Amazon Mechanical Turk, and found evidence that the user interface and the cognitive

biases of the workers play an important role in OLMs. Sheng et al. (2008) studied repeated-

labeling strategies in OLMs. Two of their main findings were that (1) repeated-labeling can

improve label quality but not always, and (2) that when processing unlabeled data is not

free, even the simple strategy of labeling everything multiple times can give considerable

advantage. Ipeirotis et al. (2010) presented algorithms that separate workers’ ability errors

from errors caused by workers’ biases. Finally, Ipeirotis and Horton (2011) discussed the

need of standardization of basic building block tasks that could make crowdsourcing more

scalable.

In 2003, Snir and Hitt (2003) studied costly bidding in online markets and found that

higher value projects attract significantly more bids, with lower quality, and that a greater

number of bids raises the cost to all participants, due to costly bidding and bid evaluation.

Finally, Pallais (2012) ran an experiment on the oDesk.com platform to study the ‘cold

start’ problem (i.e. hiring inexperienced workers) in an OLM. Her experiment showed that

both hiring workers and providing more detailed evaluations substantially improves workers’

subsequent employment outcomes.

Similarly to our work, Kokkodis and Ipeirotis (2013) studied what happens when a

worker transitions between different task categories. In their study, they provided a static

approach for studying reputation transferability across different categories in OLMs. We

extend this work and provide a more realistic dynamic framework that accounts for worker

evolution. We further compare the dynamic and static approaches and thoroughly discuss

the resulting business insights and managerial implications.
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3. oDesk Data Set

oDesk is a global job marketplace, with a plethora of tools targeted to businesses that

intend to hire and manage remote workers. The company reports more than 500,000 hours

of work billed per week, as well as an exponentially growing transaction volume of more

than $300 million per year.

3.1. Statistics

For our experiments, we use real oDesk transactional data, collected between September

1st and September 21st of 2012. In particular, we analyze a total of 1,029,024 completed

oDesk transactions. An instance in our datasets consists of the worker id, the category of

the completed task, and the average feedback score that the specific worker received for

that task.

In the oDesk platform specifically, after a user completes a task, the employer supplies

feedback scores integers between 0 and 5 in the following six fields: ‘Availability’ (f1),

‘Communication’ (f2), ‘Cooperation’ (f3), ‘Deadlines’ (f4), ‘Quality’ (f5), ‘Skills’ (f6).

The average of these scores divided by 5 represents the observed quality of the specific task

(q̄):

q̄=
1

5
(

∑6
i=1 fi

6
), q̄ ∈ [0,1] · (1)

The feedback score distribution in our training set is highly skewed towards high scores,

with a mean value of 0.89, i.e., approximately 4.5/5 in a five-star scale. Intuitively, this can

be explained by the user survival patterns in online communities: users that receive low

feedback scores are unable to get hired again, so they leave the marketplace (or rejoin with

different credentials (Jerath et al. 2011)). Thus, the majority of the marketplace users end

up having high feedback scores. Notice here that such skewed distributions of ratings are

very common across many different marketplaces (Hu et al. 2009).

3.2. Task Categories

In this study we examine tasks in six categories: ‘Software Development’, ‘Web Development’,

‘Design & Multimedia’, ‘Writing’, ‘Administration’ and ‘Sales & Marketing’.

Figure 1 shows the associative probability of categories in our study. Specifically, a

directed edge from node j to node k in the graph represents the portion of workers that
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Figure 1 Associative probabilities across the six categories in our dataset. The graph includes only edges with

probabilities greater than 0.05. The weight of an edge from j to k describes the portion of workers

that complete a task j who had previously completed at least one task in category k.

complete a task in category j, given that they have previously completed at least one task

in category k. Formally:

Weight (j → k) =
#workers in category j have previously been in category k

#workers in category j
(2)

The first thing we observe is that users work on the same category more than once, with

probabilities close to 0.8 (edges from j to j). For example, the probability of completing at

least two tasks in ‘Writing’ is 0.797, in ‘Web Development’ is 0.831, etc. This is expected

and shows a reasonable preference of the workers to keep working on tasks that they

are familiar with and build on their expertise. Second, we observe high probabilities in

categories that require similar skillsets. For example, from ‘Software Development’ to

‘Web Development’ the probability is 0.697, or from ‘Sales & Marketing’ to ‘Writing’ the

probability is 0.403 etc. The final note is that our graph is fully connected, i.e., there is

an edge from every node to all other nodes, indicating that the workers in our dataset

complete tasks across all available categories with significant probabilities. We will use
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this observation to demonstrate in the following sections that properly leveraging past

performance data from other categories can significantly improve the prediction of future

performance, even when contractors choose to complete a task in the same category.

4. Estimating worker’s quality

In this section, we present a set of increasingly sophisticated methods for estimating future

ratings for a worker, given the past rating history. We initially discuss our latent-variable

model, which assumes that each worker has multiple, latent, and potentially correlated

qualities across categories, which we try to estimate by observing the ratings received

by a variety of users across categories. For the estimation part, we start with a simple

binomial Bayesian mode;, which learns the (latent) quality from a user’s past ratings in

the same category using a binary measurement: whether the feedback will be positive or

negative; next, we show how to handle multi-degree ratings using a multinomial model.

These two approaches share the assumption that user quality is static. Since workers’

quality is potentially dynamic and evolves over time, we then present a linear dynamical

system (LDS) approach that captures this evolution. Finally, we extend these approaches by

controlling for contractors’ specializations, as well as for the development of trust between

contractors and employers.

4.1. Model

In all our models, we assume that we havem categories of tasks (e.g., ‘Software Development’,

‘Design & Multimedia’, ‘Sales & Marketing’, etc.). We further assume that each user is

endowed with a set of m category-specific, latent qualities. We denote with qij ∈ [0,1] the

quality of a user i in category j (j ∈ {1, . . . ,m}). The category-specific quality, qij, is the

probability that, given a task in category j, user i will receive a specific rating for the

task. Our goal is to estimate qij by observing the user’s past performance; we are mainly

interested in improving the vanilla averaging, mainly in cases where past feedback in a

given category is sparse.

In Figure 2, we show a schematic description of the existing baselines and of our approach.

In particular, Figure 2(a) shows the existing baseline, which provides an estimation of the

next task’s quality by uniformly aggregating all feedback ratings from past tasks, irrespective

of the affinity of past tasks to the current one. Figure 2(b) focuses on estimating the quality

of a new task in a specific category, by only using past information from completed tasks in
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Figure 2 Different ways of estimating the quality of a new task in category j at time t+1.

the exact same category, while ignoring feedback from other categories. Finally, our model

in Figure 2(c) assigns different weights to each category’s feedback, and uses these weights

to predict the expected rating for the new task. We discuss this in detail in Section 4.3.

4.2. Learning from past ratings, within category

In the next couple of sections, we describe different methodologies of learning the latent

quality of a contractor in a specific category.

4.2.1. Binomial Approach: We start with a very simple setting; we examine the case

where a user is performing tasks only within a category j, and the performance rating on

these tasks is strictly binary, either ‘good’ or ‘bad’. Given a past history of n tasks within

the given category, and assuming that we know the current quality qij of the worker i in

category j, we expect the number x of completed tasks rated as ’good’ to follow a binomial

distribution:

Pr(x|qij, n) =

(

n

x

)

qxij(1− qij)
n−x

Now, by using basic concepts of Bayesian statistics (Gelman et al. 2004), we can try to

infer qij based on the number of ‘good’ and ‘bad’ completed tasks. Specifically, if we assume

some prior distribution, qij ∼Beta(α,β), by applying Bayes’ theorem we get that:

Pr(qij|x,n) =
p(x|qij, n)p(qij)

∫ 1

0
p(x|qij, n)p(qij)dqij

.

The aforementioned quantity is known to follow the Beta(α+x,n−x+β) distrinbution.

Figure 3 shows an example. Assuming a prior distribution Beta(2,3), we show that the

resulting probability distribution functions for the two possible outcomes, ‘Bad’ (Beta(2,4))
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Figure 3 Prior and posterior distributions comparison for both ‘Bad’ and ‘Good’ outcomes.

and ‘Good’ (Beta(3,3)). We can observe the shift to the right (i.e., improved quality) when

we have a successful outcome, and to the left (i.e., downgraded quality) otherwise.

4.2.2. Multinomial Approach: In reality, binary feedback is typically used for small

tasks (e.g., on Amazon Mechanical Turk). For more complex tasks, we often see reputation

systems that have multiple grades for feedback (e.g., 5-star ratings are common). To extend

the previous model to account for a range of discrete outcomes, we use a multinomial

distribution of K possible outcomes (instead of just two):

Pr(x|qij, n) =

(

n

x1, . . . , xK

) K
∏

k=1

qxk

ij,k ,

where the vector x= (x1, . . . , xK) encodes the past feedback, with xk being the number of

times that outcome k occurred in the past. The vector qij captures the probability that the

work of worker i in category j will be of quality k. The conjugate prior for qij is the Dirichlet

distribution (see Gelman et al. (2004) for more details), with a vector hyperparameter α:

Pr(qij|α)∼D(α). Using a Dirichlet prior, and after observing the past feedback x, the

posterior distribution becomes:

Pr(qijk|x,α)∼D(xk +αk) (3)

In the previous equation, αk refers to the k dimension of the parameter vector α =

(α1, ..., αK)
′.

Instead of the approaches presented here, we could also adapt approaches from item

response theory (IRT) (Hambleton 1991), for the task at hand. However, most techniques

in IRT do not work well with relatively sparse data. IRT models work well for standardized

tests, trying to estimate the skills of students that complete houndreds of questions, and

identical questions are repeated across thousands of students. Furthermore, there is little

focus on inter-task correlations of performance, which is the focus of our work.
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q1 q2 q3 · · · qN

f1 f2 f3 · · · fN

Figure 4 Graphical model of the linear dynamical system. The figure depicts a series of N observations {f1, ..., fn

} that are a result of the latent qualities of a worker {q1, ..., qn}.

4.2.3. Linear dynamical system approach: So far, we proposed two static approaches,

in the sense that they assign equal weights to past ratings, inherently assuming that the

latent qualities are static. In reality, we would expect a more dynamic worker behavior:

As users complete more and more tasks, it is sensible to assume that their more recent

tasks are more predictive than their initial and older completed tasks. Hence, we will need

a dynamic approach that captures this evolutionary worker behavior. In this direction, we

propose to use a linear dynamical system (Bishop et al. 2006). For notation simplicity, we

drop subscripts and use q to denote the quality of some user i in some category j. For each

completed task in a specific category, we observe a feedback score, which we denote as f .

The graphical model representation of our approach is shown in Figure 4. We consider that

both q and f follow normal distributions, whose means are linear functions of the states of

their parents in the graph.

As before, our goal here is to estimate the latent quality q based on the observed feedback

f . Assuming that the worker at hand completes N tasks in the same category, the following

holds for f and q:4

p(q1) = N (µ0, p0) (4)

p(qn|qn−1) = N (aqn−1, g) (5)

p(fn|qn) = N (cqn, r) (6)

p(qn−1|f1, ..., fn−1) = N (µn−1, vn−1) (7)

We use Equation 4 to initialize our model. By using equations 5 and 6, we predict the next

observed outcome. In particular, we use Equation 5 to infer the current quality qn based

on the previous inferred quality qn−1, and then we use Equation 6 to get a distributional

4 These equations are called Kalman Filter.
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estimate of the feedback fn. Finally, with Equation 7 we estimate the quality qn based on

all the feedback observed up to time n.

In equations 4 to 7 we observe two types of parameters: those that are time-independent,

and they form a vector of input parameters θ= {a, g, c, r,µ0, p0}, and those that are time-

dependent {µn, vn} and change at each new observation. For now, we assume that the

vector of input parameters (θ) is known, and we concentrate on the estimation of {µn, vn}.

We recursively estimate these parameters at each state and make quality inferences by the

following relations:

µn = aµn−1 + kn(fn − acµn−1),

vn = (1− ckn)pn−1,

kn =
cpn−1

c2pn−1 + r
,

pn−1 = a2vn−1 + g

where kn is known as the Kalman gain of the model.

Input parameter estimation: Now that we know how to use our model to make

quality predictions, we need to estimate the input parameter vector θ= {a, g, c, r,µ0, p0}.

To do so, we use expectation maximization (EM). The intuition for our EM algorithm is the

following. Assuming that at some particular state of our dynamical system, the parameter

vector is θ, we ran the Kalman filter equations to determine the distribution of the latent

quality of the worker, p(q|f,θ). For each worker, the complete data log-likelihood is given

by:

logL= lnp(f, q|θ) = lnp(q1|µ0, p0)+

N
∑

n=2

lnp(qn|qn−1, a, g)+

N
∑

n=1

lnp(fn|qn, c, r)

Our objective function will be the expectation of this log-likelihood w.r.t. q|θ:

Q(θ′|θ) =Eq|θ(logL)

Assuming that we are estimating our parameters in a set of M sequences of observations

of length N , this function becomes:

Q(θ′|θ) =Eq|θ

[

M
∑

m=1

(

lnp(q1,m|µ0, p0)+

N
∑

n=2

lnp(qn,m|qn−1,m, a, g)+

N
∑

n=1

lnp(fn,m|qn,m, c, r)
)

]
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To maximize this function Q, we only need the following sufficient statistics:

E[qn] = q̂n

E[qnqn−1] = v̂nJn−1 + q̂nq̂n−1

E[q2n] = v̂n + q̂2n

where:

q̂n = µn + Jn(q̂n+1 − aµn) (8)

v̂n = vn + J2
n(v̂n+1 − pn) (9)

Jn =
avn

pn
(10)

Notice that in equations 8 to 10 we include future observations. This set of backward

recursions is called Kalman smoother. Now, if we take the derivative of Q w.r.t. to our

input parameter vector θ, we get:

µ′
0 =

1

M

M
∑

m=1

q̂1,m (11)

p′0 =
1

M

M
∑

m=1

(

E[q21,m]−E2[q1,m]
)

(12)

a′ =

∑M

m=1

∑N

n=2E[qnqn−1]
∑M

m=1

∑N

n=2E[q2n−1]
(13)

g′ =
1

M(N − 1)

M
∑

m=1

N
∑

n=2

(

E[q2n]− 2a′E[qnqn−1] + a
′2E[q2n−1]

)

(14)

c′ =

∑M

m=1

∑N

n=1 fnE[qn]
∑M

m=1

∑N

n=1E[q2n]
(15)

r′ =
1

MN

M
∑

m=1

N
∑

n=1

(

f 2
n − 2c′E[qn]fn + c

′2E[q2n]
)

(16)

4.3. Learning across categories

In practice, we often have insufficient history within a category, and the distribution of qij

does not provide much information. This results in a qij distribution with high variance and

very uncertain estimates. However, we often have the intuition that even though someone

may have no experience in a given category (e.g., in developing Android applications),

the past experience in some other, related categories (e.g., iPhone development) can be
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predictive of future performance in a new category. Conversely, some categories may give

no useful information; for example, past experience as an administrative assistant does not

give much information about the ability to carry out a translation task from Chinese to

English.

In our model, we assume that the quality of worker i for a category j (qij) can be

estimated based on our knowledge of the history and values qik for other categories. Since

qij are probability values, we use the method presented by (Clemen and Winkler 1990) to

combine probability estimates from multiple, correlated sources:

logit(qij) =

m
∑

k=1

αjklogit(qik)+ εij , (17)

where αjk, βj are data-specific coefficients, εij is a random disturbance, and logit is the

standard logit function:

logit(x) = log(
x

1−x
)⇔ logit−1x=

exp(x)

1+ expx
. (18)

We compute the parameters of Equation 17 by running linear regression (Greene 2007).

4.4. Estimating quality distributions

We showed before that in the binomial (multinomial) case, Pr(qij|.) follows some Beta

(Dirichlet) distribution and that in our linear dynamically system approach, qij and fij

follow Gaussian distributions. However, to use the regression in Equation 17, we need

numeric values for qij and not distributions. As a result, in order to use the acquired

knowledge of the distribution of values of qij within a framework, that allows only scalar

values, we use the following two techniques:

• Point Estimate (PE): We set qij to be a mean of the user’s resulting distribution.

In particular, for the binomial case, for a prior Beta(α,β), the value of qij is:

qij =
x+α

n+α+β

For the multinomial model, with a prior D(α), where α= (α1, . . . , αk, . . . , αK), the mean

value of qij is:

qij =
1

K

K
∑

k=1

k ·
xk +αk

n+
∑K

k=1αk

(19)

Finally, the point estimates for the normal distributions are their means.
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• Random Sampling (RS): With this approach, we instantiate the values qij by

sampling multiple random values from the associated distribution.5 For the multinomial

model, in order to sample from the resulting Dirichlet distribution, we follow the proce-

dure described by Gelman et al. (2004): we draw values d1, . . . , dK from K independent

Gamma(xk +αk, xk +αk) distributions, and then we estimate qijk as follows:

qijk =
dk

∑K

k=1 dk

4.5. User Specificity

Users in OLMs are highly heterogeneous; some of them focus on one category and build

an expertise on a specific set of tasks, while others complete tasks that span multiple

categories. So far, we have not accounted for this ‘user specificity’ in our model. Similar to

Adamic et al. (2008), we include the entropy of the previously completed tasks’ category

distribution. In particular, we assume that the entropy of a user i is given by the following:

ei =−
∑

j

p(j) log(p(j)) ,

where p(j) is the probability of worker i to complete a task in category j. When i is a new

contractor, we assume that all categories have equal probability (uniform). Intuitively, the

lower the entropy, the higher the user specificity in a certain set of categories.

With the inclusion of user-specificity, our regression formula presented in Equation 17

now becomes:

logit(qij) =

m
∑

k=1

αjklogit(qik)+βei + εij .

4.6. Developing reliability in the marketplace

As workers complete more and more tasks in the marketplace, their reliability increases;

intuitively, a worker who has completed 20 tasks in the marketplace is more trustworthy

than a worker that has just joined (also see (Jerath et al. 2011)). In parallel, workers build

up their reliability by successfully completing multiple tasks with the same employers. On

top of these two observations, the work of Sharara et al. (2011) suggests that highly trusted

users are more likely to receive higher ratings. To control for this possibility in our model,

5
In our work, we sample 40 values from the underlying distribution.
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we assume that the number of completed tasks, as well as the number of past collaborations

between same worker-employer pairs, are correlated with the expected quality of the worker.

Our proposed model now becomes:

logit(qij(t+1)) =

m
∑

k=1

αjklogit(qik(t))+βei + γhi + δwi + εij , (20)

where hi is the number of completed tasks of worker i, and wi is the number of times that

worker i has previously collaborated with the employer at hand.

4.7. Increasing robustness

To further improve the robustness of our model, we propose to break down the category-

specific quality of each user qij into the average quality of the category (qj), as well as the

average quality of the user (qi). The final (extended) version of the proposed approach now

becomes:

logit(qij) =

m
∑

k=1

αjklogit(qik)+βei + γhi + δwi + ηqi + ζqj + εij . (21)

5. Analysis of oDesk Transactions and Feedback

In this section we build and evaluate our approaches on a real transactional dataset from

oDesk.com (also see section 3).6 Recall that our goal here is to examine whether we can

improve the prediction of feedback ratings for contractors that perform a task through

oDesk, by incorporating information from other categories.

5.1. Setup

We start our discussion by presenting information about the settings and parameters that

we use in our analysis, as well as the experimental procedure that we follow.

5.1.1. Parameters: For the binomial model, we use the threshold θ to discretize the

outcome into ‘good’ and ‘bad’. By considering the skewness of the feedback distribution in

the oDesk marketplace towards high scores, we choose θ= 0.9.7 The prior class probabilities

under this setting (’bad’ vs. ‘good’) are 24.3% vs. 76.7%.

For the multinomial model, we use the value K to define the number of discrete classes.

For our analysis, we set K = 5 and uniformly split the [0,1] interval into five buckets: tasks

6 The dataset is available, on request, through oDesk.
7 We also experimented with θ values: 0.6,0.7,0.8,0.9. In all these experiments, the binomial approach was significantly
better than the baseline. However, the best results were achieved with θ= 0.9.
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with q̄ ≤ 0.2 fall in bucket 1, tasks with 0.2 < q̄ ≤ 0.4 fall in bucket 2, and so on. (See

Equation 1 for the definition of q̄.) Intuitively, K is a discrete star rating, 1 to 5, assigned

to a worker.

Next, for all our models, we use a History Threshold, (η), that represents the worker’s

minimum number of completed tasks across all categories for providing a prediction;

on expectation, the higher this threshold, the more accurate our predictions will be. In

addition, by varying the η value, we also examine the volatility of the lower bound for

observing adequate performance. We evaluate each one of our models for discrete values of

η ∈ {3,5,7,9,11,13,15,17,19}.

Finally, for the LDS model, the initialization of our parameters is automatically performed

by the EM procedure described before (see Equations 11 to 16).

5.1.2. Procedure: We conduct our experiments as follows: for each of our models, we

first use the training data to compute the logit(qij) values for each reviewer i in the set

and for each category j, following the point estimate (PE) and random sampling (RS)

approaches, described in Section 4.4. We then compute the linear regression coefficients of

Equation 17. Finally, we repeat the process for different history threshold values.

Holdout Evaluation: We use holdout evaluation to test our models: we randomly choose

70% of the total workers and their related tasks as our training set, and we consider the

remaining 30% of the data to be our test set. In all of our experiments, we build models

on the training sets, and evaluate them on the test sets. In this way, we ensure that the

resulting performance evaluation metrics are not due to overfitting the data.

Prior Distributions: Our models suggest that we have to choose some reasonable prior

distributions. Specifically, for our binomial approach, we assume that qij ∼ Beta(9,1)

(i.e., α= 9, β = 1). The selection is not random, since it represents a belief that is close to

the real prior expectation in the marketplace (which is captured by the feedback scores

in our training set).8 Similarly, for our multinomial approach, we choose a parameter

vector α= (1,0,0,0,10). Again, this selection aims to capture the marketplace’s biases,

first towards high scores and second towards scores at the extremes of the distribution.

8 We further experimented with many other priors, including the uniform prior Beta(1,1). The results were qualitative
the same across our evaluations, but slightly worse in comparison with our Beta(9,1) prior.
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5.2. Evaluation Metrics

Our goal here is two-fold: first, we want to have good predictive performance when predicting

the quality of a new task; second, we are interested in understanding whether there are

significant correlations among different task categories. To estimate the predictive accuracy

of our approach, we use the mean absolute error (MAE) across all tasks in our test set,

defined as:

MAE =
1

N

N
∑

t=1

|q̂t − q̄t|

where N is the total number of tasks in our test set, q̂t is the predicted quality of task t,

and q̄t is the actual feedback score of task t. We compare our results with two baselines

that we discuss next in Section 5.2.1, by computing the MAE percentage improvement over

the baseline, which we define as follows:

Improvement%=
MAEBaseline −MAEmodel

MAEBaseline

We further estimate the information entropies of the resulting error distributions for all

our models and the baseline. Intuitively, the entropy of an error distribution represents

the uncertainty of the distribution: lower values of entropies indicate more concentrated

error distributions (Borda 2011). To compute the entropies, we assume that the error

distributions are represented by a random variable X ∈ [0,1], and we use the following

formula:

E =−
∑

i∈De

p(X = i) log p(X = i), (22)

where De is the resulting error distribution.

5.2.1. Baseline Models We compare the performance of our proposed approaches to

two different baselines. The first one averages the past reputation of the workers across

categories. In particular:

q̂ij(T +1) =
1

Ni(T )

Ni(T )
∑

t=1

qij(t) (23)

The second one draws on recommender systems, and predicts the outcome based on

workers’ similarities (user-user collaborative filtering (CF) (Shapira 2011). As we discussed in

the introduction, our setting does not directly map to the commonly-observed recommender
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Task (cat) Contractor 1 Contractor 2 . . . Contractor n

Web Dev 1 0.8 . . . 0.4
Soft Dev ? 0.3 . . . 1
Writing ? ? . . . 0.7
Admin 0.9 0.8 . . . 0.5
Multimedia 1 ? . . . 0.4
Sales ? ? . . . 1

Table 1 Example of our rating matrix.

systems setting (e.g., the Netflix setting or the Amazon setting). To build a collaborative

filtering approach, we assume that contractors are the users, and categories are the items.

The ratings are then the received feedback scores for each completed task. An example of

the proposed rating matrix is shown in Table 1. An element of this matrix represents the

observed average quality of the specific worker (column) on the specific category (row).

Question marks (‘?’) denote that the worker has’t completed a task in the respective row

category.

User-user Collaborative filtering is based on the premise of finding other users whose

past rating behaviors are similar to that of the user at hand. In our case, the algorithm

finds workers with past performances, from all available categories, that are similar to that

of the worker with whom we want to predict the performance. For example, suppose we

are interested in worker w’s performance in ‘Software Development’. We know that worker

w has completed tasks in ‘Web Development’ and ‘Design & Multimedia’, with average

past performances of 0.8 and 0.9 respectively. User-user CF will find other users (nearest

neighbors) that have similar performances in ‘Web Development’ and ‘Design & Multimedia’,

and use their performances in ‘Software Development’ to predict the performance of worker

w.

User-user CF needs a similarity function to find the nearest neighbors for each user.

Multiple similarity metrics are reported in the literature (Ekstrand et al. 2011b). In our

scenario, we use the cosine similarity among users:

sim(w,z) =
< qw.qz >

||qw||||qz||
, (24)

where qw (qz) is the vector of past performance in different categories of worker w (z),

and ||.|| is the L2 norm.

To generate predictions for a worker, we need to compute the worker’s neighborhood of

neighbors. The size N of this neighborhood is given as input to the algorithm. To select
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Figure 5 MAE comparison between different neighborhood sizes.

the best possible value for N , we evaluate user-user CF in terms of MAE (see 5.2) for

N ∈ {10,20,30,40}. The results are shown in Figure 5. Better performance is achieved for

N = 30, which is the neighborhood size that we use in the rest of our analysis.9

Finally, for our evaluation, we order our train and test sets by the date of completed

tasks, and we retrain our recommender every week, including all the completed tasks of

that week.

5.3. Performance Analysis

We start our analysis by discussing the holdout evaluation results, and then, we present

the estimated error distribution entropies.

5.3.1. Holdout evaluation: In Figure 6, we show the percentage improvement over

the average baseline of our basic approaches (Equation 17, Binomial, Multinomial, and

LDS), using the point estimate (PE) (left) and the Random Sampling (RS) (right). On

the x-axis we show the number of completed tasks (history η). Note that the baseline is at

zero, and every positive value is an improvement over the baseline (see Equation 5.2).

All our approaches perform better than the baseline, providing an improvement of up to

25%. In addition, all our models show an increasing improvement over the baseline with

the history parameter η growth. This behavior is expected, and can be explained by the

Bayesian feature of all our approaches (the more input points, the better the posterior

distribution estimates). As expected due to its simplicity, the Binomial approach performs

worse than the Multinomial, which in turn performs worse than the LDS. Furthermore,

all of our approaches perform significantly better than the collaborative filtering approach.

9 For the implementation of our collaborative filtering approach, we used the Lenskit library (Ekstrand et al. (2011a)).
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Figure 6 The holdout improvement of our models (Equation 17) compared to the baselines, as measured by

‘mean absolute error’ (MAE) , for the point estimate (PE) and random sampling (RS).

Finally, there are no significant differences between the point estimate and random sampling

approaches (left and right figures).

To evaluate how our approaches perform, without aggregating information from other

categories, we build single-category models. In particular, for each one of the Binomial,

Multinomial, and LDS, we build models that restrict prediction on category-specific history

(see 2(b)). In the case where no previous category-specific history is available, we use the

across-categories history to estimate performance. The results are shown in Figure 7. The

improvement is now up to 3%, significantly lower than the improvement provided by the

models that combine information across categories. Second, we can see that LDS learns

faster (at 7 observations LDS already performs better than the average baseline) while the

Multinomial takes longer (11 observations). The Binomial never outperforms the baseline.

It is only fair to point out that this version of our models is not directly comparable to the

average baseline, because the latter always accounts for the maximum number of completed

tasks (i.e., complete history), while our models only account for the number of tasks that

are completed in the category at hand (i.e., category-specific history).

Finally, in Figure 8 we present the performance of the extended version of our models (see

Equation 21). The performance of this extended version is very similar to the performance

of the basic version of our approaches presented in Figure 6. The main difference is that all

three approaches (Binomial, Multinomial and LDS) collapse; this is because of the high

impact that all the extra variables (e,h,w, qi, qj) have on the quality estimation. We further

discuss this in section 5.4, where we review the marginal effects of each variable.
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Figure 7 The holdout improvement of our per-category models compared to the average baselines, as measured

by ‘mean absolute error’ (MAE) , for the point estimate (PE) and random sampling (RS).
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Figure 8 The holdout improvement of our extended models (Equation 21) compared to the baselines, as mea-

sured by ‘mean absolute error’ (MAE) , for the point estimate (PE) and random sampling (RS).

5.3.2. Entropies of the error distributions: In Figure 9, we present the information

entropies of the error distributions of the basic version of our models (Equation 17),

the collaborative filtering approach, and the baseline. As expected, all our models have

significantly lower entropy values than the baseline and the collaborative filtering approach,

in all histories. Furthermore, all our models have low entropies in the beginning (indicating

a good choice of prior values). When the number of completed tasks increases, and up to

around seven completed tasks, the entropies slightly increase. This is the adaptation period,

where our models try to capture user-specific performances. Beyond that point, and as

the number of completed tasks further increases, all our models seem to adapt to the user

quality and present lower entropies.
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Figure 9 The entropy values for the resulting error distributions of our basic models (Equation 17) and the

baseline, for point estimate (PE) and random sampling (RS).

5.4. Coefficient analysis: Correlated categories

To study the transferability of each considered task-category, we estimate the marginal

effects of the coefficients of Equation 21. In particular, we first solve this Equation w.r.t.

qij (we drop the i index for simplicity):

qj =

∏m

k=1(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

1+
∏m

k=1(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

(25)

Now we can compute the marginal effects for each qk, by estimating their partial derivatives

w.r.t. to the rest of the categories. In particular we have:

∂qj

∂ql
=

αjl(
ql

1−ql
)αjl

ql − q2l

∏

k 6=l(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

(

1+
∏m

k=1(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

)2 (26)

For entropy, trust, as well as for the average user quality qi and the average category

performance qj:

∂qj

∂h
= γ ·

∏m

k=1(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

(

1+
∏m

k=1(
qk

1−qk
)ajk · exp(βe+ γh+ δw+ ηqi + ζqj)

)2 (27)

We evaluate this formula at the means of the distributions qk (Greene 2007). Intuitively,

for a certain category j, the marginal effect w.r.t. category l (i.e., mejl) implies that if the

quality of category l increases by 0.001, and assuming that the qualities of all the other

categories remain at their averages, then we would expect on average an increase in the

quality of the next task in category j of 0.001 ∗mejl. Hence, the higher the marginal effect

of category l to category j, the more transferable is the reputation of category l to category

j.
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WebDev SoftDev Writing Admin Des&Mult Sales Entropy # tasks Rehires qi qj

Web 0.009*** 0.003* 0.002 0.004* 0.004*** 0.002 -0.001* 0 0.001*** 0.042*** -0.016***
Soft 0.001. 0.011*** 0.003 0.006** 0.004. 0.001 -0.001. -0 0*** 0.034*** -0.012****
Writing 0.002. 0.004 0.013*** 0 0.006*** 0 -0 -0 0*** 0.038*** -0.017***
Admin 0.003* 0.007* 0.007*** 0.011*** 0.001 -0 -0 0 0*** 0.041*** -0.015***
Mult. 0.001. 0.006* 0.004* 0 0.01*** -0 -0 -0 0*** 0.032*** -0.014***
Sales 0.005*** 0.001 0.006** 0.006*** 0.019*** 0.01*** -0.001 -0 0.001*** 0.056*** -0.024***

Table 2 Marginal Effects of the coefficients for the LDS model. Significance codes: ‘***’ 0.001,‘**’ 0.01, ‘*’

0.05, ‘.’ 0.01

The marginal effects of our LDS model are presented in Table 2. An element i, j in Table 2

shows the effect of the jth column category/variable to the ith row category. If we focus on

the effects amongst the six categories we consider (first six columns of the table), we observe

that for each category, the diagonal effects are all significant and strong. For example, the

effect of ‘Web Development’ on a ‘Web Development’ task is 0.009 (element (1,1) on the

table) and it is the strongest effect on ‘Web Development’ amongst all categories. The same

applies for ‘Software Development’ (element (2,2)), ‘Writing’ (element 3,3)), etc.

As we mentioned earlier, the higher the effect of one category with another, the more

transferable is the reputation. For instance, ‘Administrative’ tasks have a significant and

high coefficient (0.006) on ‘Software Development’ tasks; Hence, we can say that reputation

in ‘Administrative’ tasks is transferable to ‘Software Development’ tasks. In Table 2, we

observe that all marginal effects in the first six columns are positive. This indicates a

positive correlation/transferability between categories. However, not all of the coefficients

are significant, and among the significant ones, some have very small effects. Based on the

significance and the value of each marginal effect, we suggest the following:

• Reputation in ‘Design & Multimedia’ transfers to ‘Web Development’

• Reputation in ‘Administration’ transfers to ‘Software Development’

• Reputation in ‘Design & Multimedia’ transfers to ‘Writing’

• Reputation in ‘Writing’ transfers to ‘Administration’

• Reputation in ‘Web Development’ transfers to ‘Sales’

• Reputation in ‘Administration’ transfers to ‘Sales’

• Reputation in ‘Design & Multimedia’ transfers to ‘Sales’

If we look at the effects of the rest of the variables, we observe that the average quality

of the user (qi) has a very strong positive effect (between 0.03 and 0.056) in all categories.

The entropy effects appear to be very small or insignificant, and not surprisingly, negatively

correlated with the expected quality of the outcome (i.e., the higher the user specificity,

the higher the expected outcome). The effect of the number of completed tasks appears
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Figure 10 Mean Absolute Error distributions for all our models and the baseline.

to be insignificant, while the effect of rehires is positive, but very small. Finally, the

average performance in the category at hand (qj) is negatively correlated with the expected

performance.

5.5. Errors broken down by categories

In Figure 10 we show the log-density of the mean absolute error distributions, for all our

models and the baseline. We observe that the baseline tends to have higher errors in general,

while our proposed models result in error distributions with a close to zero mean. If we

compare our models, the LDS and multinomial have similar behavior, while the binomial

performs slightly worse. Furthermore, we observe a small peak in the error distributions of

the LDS and the Multinomial models concentrated around 0.8. This is due to a few very

bad workers that receive systematically low feedback ratings; our models, equipped with

priors that reflect the general population, need some time to properly estimate the low

scores of these workers. Using an uninformative prior helps in this case, with the trade-off

of having a relatively higher error rate for LDS and multinomial, which is still significantly

lower than the baseline.

We further analyze the errors of our model by breaking them down by category. In

Table 3, we show the improvement of our models over the baseline on transitions between



Authors’ names blinded for peer review

Article submitted to ; manuscript no. MS-13-01388 29

Transition Binomial (%) Multinomial (%) LDS (%)

Web Dev→Web Dev 22.737 24.845 25.217
Web Dev→Soft Dev 23.721 26.257 25.856
Web Dev→Writing 13.594 14.427 15.090
Web Dev→Admin 21.691 23.837 25.249
Web Dev→Multimedia 22.241 24.792 24.724
Web Dev→Sales 12.328 13.295 13.398

Soft Dev→Web Dev 16.391 18.210 18.600
Soft Dev→Soft Dev 22.715 25.325 25.429
Soft Dev→Writing 23.646 27.203 27.970
Soft Dev→Admin 16.973 18.692 19.665
Soft Dev→Multimedia 38.684 44.095 45.771
Soft Dev→Sales 52.847 59.584 59.010

Writing→Web Dev 10.215 13.213 14.395
Writing→Soft Dev 28.797 34.333 35.069
Writing→Writing 25.900 29.386 29.643
Writing→Admin 23.915 26.743 27.168
Writing→Multimedia 43.897 47.879 49.395
Writing→Sales 15.317 16.432 16.854

Admin→Web Dev 18.320 20.330 20.817
Admin→Soft Dev 42.837 47.725 47.677
Admin→Writing 20.083 22.375 22.430
Admin→Admin 22.850 25.360 25.642
Admin→Multimedia 16.848 18.909 19.971
Admin→Sales 13.938 14.992 15.256

Multimedia→Web Dev 23.002 26.073 26.499
Multimedia→Soft Dev 22.651 25.764 25.834
Multimedia→Writing 25.210 28.801 29.519
Multimedia→Admin 17.592 20.132 21.621
Multimedia→Multimedia 25.383 28.331 28.328
Multimedia→Sales 12.204 13.031 14.936

Sales→Web Dev 13.499 15.038 15.489
Sales→Soft Dev 38.968 40.005 40.143
Sales→Writing 18.225 19.934 20.079
Sales→Admin 19.004 20.903 21.064
Sales→Multimedia 22.554 26.965 27.907
Sales→Sales 16.734 18.404 18.805

Table 3 Improvements broken down by transitions.

categories. For the first block (‘Web Development’ transitions), we can see that our models

perform worse in transitions between ‘Web Development’ and ‘Sales & Marketing’, or

between ‘Web Development’ and ‘Writing’ (improvement between 12% and 16%). In the

rest of the transitions the improvement is fairly good, around 24%. Moving to the ‘Software

Development’ transitions, we notice a kind of similar behavior in most of the transitions.

However, in the transitions from ‘Software Development’ to ‘Design & Multimedia’ and

‘Software Development’ to ‘Sales & Marketing’, we observe an improvement of up to 46%

and 59% over the baseline, respectively. Similarly, our model significantly improves the

predictions for the transitions from ‘Admininitration’ → ‘Software Development’ and ‘Sales

& Marketing’ → ’Software Development’.
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Feature Description

Completed Tasks The number of completed tasks
Entropy The entropy of the worker, as defined by equation 4.5
Rehire Whether the instance at hand is a rehire or not

Table 4 Attributes used to investigate when our models fail.

These observations can facilitate a better use of our model: an online labor market can

assign different weights on predictions, based on previous evidence derived from such an

error-by-category analysis, and hence make inferences about/or merchandise contractors

with higher confidence.

5.6. Further insights

To further understand the behavior of our models we propose to build models that capture

the probability of providing a wrong prediction. In particular, we create a dataset where

each instance has as target variable the prediction error of our approaches, and as feature

vector, the attributes shown on Table 4. For each instance in our dataset, we assign an

‘Error’ label if the error of our prediction was greater than 0.02 10, and a ‘Correct’ label

otherwise.

Our goal is to predict the probability of having a correct prediction, given the values

of our feature sets. We consider Logistic Regression, Naive Bayes, Decision Trees, and

Support Vector Machines. We split our data into test and training sets, and perform ten-fold

cross-validation. We then evaluate their performances in terms of Accuracy and Area Under

the Curve (AUC Provost and Fawcett (2001)). The results are shown in Table 5. We observe

that Decision Trees and Logistic Regression have the highest accuracy (71.2%) and AUC

scores (0.778).

Of particular interest are the coefficients of Logistic Regression: the ‘entropy’ has -1.13,

the ‘completedTasks’ 0.09 and the ‘workedTogether’ 0.473. The marginal effects are -0.281,

0.023, 0.118 respectively. Aligned with intuition, we observe that as the entropy increases,

the probability of making a ‘correct’ prediction decreases. In addition, this probability

increases with the number of completed tasks of the worker, as well as with the number of

previous collaborations between the same worker-employer pair.

10 Note that this number was chosen so that we have a balanced dataset, 50% Error instances and 50% Correct
instances.
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Classifier Accuracy AUC

Logistic Regression 0.702 0.778
Support Vector Machines 0.702 0.702
Naive Bayes 0.632 0.765
Decision Trees 0.712 0.774

Table 5 Classification Results.

6. Robustness checks using simulations

While the analysis with the oDesk data indicates that our approach can offer significant

improvements in the predictive ability of a reputation system, we also want to examine

the robustness of our approach under different settings. For this reason, we present here

an analysis with the use of synthetic data, examining the performance of our models with

datasets that follow a variety of distributions. In particular, we test the performance of our

models in three different scenarios of input distributions:

1. oDesk-like input distribution

2. Uniform input distribution

3. Random input distribution

In the next paragraphs we discuss the data generation and the experimental results for

each one of these input distributions.

6.1. Data Generation

In all our synthetic experiments we assume a total of eight categories. The distribution

of these categories is defined by a vector c. We further use an 8× 8 transition matrix M

between the eight categories, where an element in the i-th row and j-th column represents

the transition probability from category i at time t to category j at time t+1. Each user i

in our synthetic dataset has a quality vector qi = [qi1, . . . , qi8]
′ for all available categories.

This vector qi describes the probability that the user will successfully complete a task in

category j. We assume that for each worker i and for a certain category j, the worker’s

quality follows a normal distribution with mean qij, and some randomly-defined small

variance σ2 ∈ (0,0.2]. Based on these quality distributions, we sample the performance of

a completed task. Finally, each user is assumed to randomly complete between 1 and 40

tasks.

6.1.1. oDesk-like input distribution: In this scenario, we assume that categories form

clusters, i.e., their transitional probability from one category to another is higher within

the same cluster than across different clusters. We randomly assign probabilities to the
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Figure 11 Synthetic Experiment — oDesk-like inputdistribution

● ●
●

●
● ● ●

● ●

●
● ●

●
● ●

● ●
●

Basic Extended

10

20

30

40

50

60

3 7 11 15 19 3 7 11 15 19
History − η

Im
pr

ov
em

en
t %

● Binomial
CF
LDS
Multinomial

Figure 12 Synthetic Experiment — Uniform input distribution

distribution vector c. The transition matrix M has low probability values when transitioning

happens across clusters (less than 0.05), and high probability values when the worker

remains in the same category or when transitioning happens across other categories in the

same cluster. Users are assumed to have expertise in one main category (randomly selected)

and in a few other similar ones based on the cluster that the main category belongs to.

6.1.2. Uniform input distribution: In this scenario, the transition matrix is uniform

(every transition has equal probability = 0.125), the category vector is also uniform, and

the user quality vector qi is randomly created.

6.1.3. Random input distribution: In this scenario, the transition probabilities are

completely random, as is the quality vector for each user and the category vector c. Since

all qualities are randomly selected in this case, we run our experiments 100 times to get

reliable results. We discuss these results next.
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Figure 13 Synthetic Experiment — Random input distribution

6.2. Results on Synthetic Data

After generating the data, we split it into training and test sets, based on users (i.e., the

same user cannot be both in the training and test datasets). We use the training sets to

build our models and the test sets to evaluate them.

In Figures 11, 12, and 13, we present the results of our simulations. In each figure, we

show on the left the performance of our basic model (see Equation 17), and on the right

the performance of the extended version of our model (Equation 21).

The first thing we notice is that collaborative filtering performs better than our approaches

in the uniform case (Figure 12). To understand this observation, recall that in this scenario,

workers don’t present a skewed past history towards certain categories: instead, they

complete tasks across all categories with equal probability. This results in rating matrices

that capture a more accurate average per-category quality of each contractor (see Table 1).

This characteristic is crucial to the collaborative approach since it’s the base for (1)

predicting the quality of a new task and (2) selecting nearest-neighbors that follow similar

quality distributions (i.e.,vector q) with the worker at hand.

To clarify this, consider the example presented in Table 6. The first row shows the number

of completed tasks per category for an oDesk worker. This worker has a preference in tasks

of category 1. If he/she chooses to complete a task in category 3, the CF-prediction will be

based only on one observation (i.e., uncertain). If the oDesk worker chooses to complete a

task in category 2, the CF will find the k-nearest neighbors based on the highly uncertain

values – only a single observation – of categories 3 and 4, and of course, on the low-variance

estimated quality of category 1. As a result, the CF approach would present quite uncertain

estimates and perform poorly (similar to the CF performance in the other two cases of our
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Category 1 Category 2 Category 3 Category 4

oDesk worker 8 0 1 1
Uniform worker 3 2 2 3

Table 6 Example: Number of completed jobs per category

synthetic study, Figures 11 and 13). On the other hand, in the uniform-worker scenario

(second row on Table 6), the CF approach will present low-variance predictions based on

more data points and hence show an increased performance (similar to Figure 12).

Our proposed approaches perform reasonably well in all cases. In addition, the LDS clearly

outperforms the Multinomial model, which in turn outperforms the Binomial approach.

Specifically, in the oDesk-like input distribution (Figure 11), LDS provides improvements

up to 65%, followed by the Multinomial and the Binomial, which need more observations to

provide significant improvements over the average baseline. In the uniform-input distribution,

the LDS outperforms the average baseline, however it’s not performing as good as the

collaborative filtering since, as we explained before, the CF approach is more appropriate

for this scenario. Finally, in the Random input distribution, LDS is again a clear winner,

followed by the Multinomial and the Binomial approaches.

In conclusion, the synthetic experiments provide evidence that the proposed approaches

perform reasonably well independent of the underlying input distribution. Collaborative

filtering should be preferred over the proposed approachers only when the users past histories

are uniformly distributed across all available categories/skills/types-of-tasks. In the rest,

more realistic scenarios, where users present skewed past histories, our approaches – and

especially LDS – provide significantly better results. We further support this argument in

Appendix A, where we provide an additional analysis on the transferability of Amazon.com

reviewers’ reputation across different various categories.

7. Managerial Implications, Limitations, and Future Directions

In this study, we presented a variety of models that improve existing reputation systems by

predicting a task-specific reputation score based on the past, category-specific reputation

history of a worker. We achieved this by assigning different weights to the worker’s observed

category-specific qualities, which are automatically inferred by analyzing the available

reputation ratings. We evaluated our methods by using over a million transactions from

oDesk, an online labor market, and we demonstrated that our methods provide more

accurate results than existing baselines. Based on our resulting coefficients, we were also
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able to infer the affinity of tasks and contractor abilities across different categories of the

oDesk marketplace. Finally, by performing a synthetic analysis, we provided evidence that

our approaches perform much better than the competing baselines in all realistic scenarios

where users present an affinity to certain types of tasks.

Our work has direct implications for the design and scalability of online marketplaces.

Consider a real example from the oDesk marketplace. Suppose that a worker has completed

a set of ‘Sales & Marketing’ tasks, and is now applying for a ‘Software Development’ task.

Before, the client would have no accurate information to estimate the performance of this

worker, or the client could just use the overall reputation of the worker to get an estimate,

with high uncertainty. Our approach limits this uncertainty by 40.1% (see Table 3), hence

it provides a significantly more accurate estimate of future performance. As a result, the

marketplace builds up trust, increases transaction volume, and creates an environment for

better matches and better overall experience for all involved parties.

Furthermore, our approach provides a guideline for many other labor marketplaces.

For example, TaskRabbit11 or LinkedIn12 can leverage this approach to infer correlations

among job types. Even online marketplaces such as Amazon.com can use our approaches

to improve the reputation scores displayed for merchants that are active across multiple

product categories (e.g., selling photo equipment vs. selling ethnic food), and analyze

the abilities of Amazon.com reviewers to provide helpful reviews across different product

categories. We include a short analysis of the latter case in appendix A .

Our framework can also be applied to offline marketplaces, if data is available. Since

in the offline market workers present skewed past histories towards certain types of jobs,

we expect our approaches to perform similar to the online setting. However, the specific

observations we made regarding reputation transferability across categories in the oDesk

platform cannot be taken as-is to the offline setting. The main reasons are that (1) the

definitions of these categories in online labor markets are different than those in the offline

market and (2) the tasks in online labor markets are usually short-term, while in the offline

setting we frequently deal with long-term employments.

An example of the offline setting that we could deploy our methods is the following:

consider an academic department that is responsible to teach a given set of courses. Based

11
https://www.taskrabbit.com/

12
http://www.linkedin.com/
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on the previous evaluations of the department’s professors across the given set of courses,

we can build our approaches to estimate the courses’ associations. The department then

could use this information to perform a better-informed and more efficient course allocation.

An extension of the current line of work is to go beyond categories, and use the ’skill

tags’ that are used in LinkedIn, oDesk, TaskRabbit, and other marketplaces, to understand

affinities of skills and the predictive ability that these skills have when contractors move

to new areas. For example, if a contractor knows ‘jquery’, we may be able to see a good

predictive power when transitioning to a skill ‘node.js.’13 Such an analysis can allow for

easier filtering and identification of candidates for job openings, even if these candidates do

not fully satisfy the requirements of a job opening, therefore significantly improving the

efficiency of recruiting processes.

In general, our work provides a clear methodology on how to study whether reputation is

transferable across different types of categories, and shows the quantifiable improvements

that result from actively using this information to improve current reputation systems.

Furthermore, our analysis shows that the proposed approaches can be successfully applied

in any situation where users (online or offline) have skewed past histories towards certain

types of tasks.

A key limitation that should be mentioned is that our current model is predictive and

not necessarily causal. A basic characteristic of predictive models is that they capture

the behavior of the existing system, as is. For example, we may predict that a worker

who has worked as virtual assistant in the past, with good ratings, is also going to be a

good transcriptionist. However, this is a result of a training set in which virtual assistants

self-selected and applied for transcription jobs. It is important not to assume that every

virtual assistant will be a good transcriptionist, but this applies to those that self-selected

to apply to such jobs. As a result, our methods can best be applied to modify the rating

scores shown to the employers when they pick workers, as this ‘interference’ is not expected

to change the self-selection process of applying for jobs much.

Despite the shortcoming listed above, we believe that a multi-category reputation scheme

stands to substantially improve the reputation scores, and reputation systems in general, of

online (and offline) marketplaces that allow a heterogeneous mix of tasks to be done through

13 They are both JavaScript-related technologies.
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them. LinkedIn, TaskRabbit, oDesk, and even Amazon.com widely host heterogeneous

tasks. Past histories can be deceiving when users transition between job categories, engage

in a career change, or naturally move into the ‘next step’ of their career (e.g., from

software developer to managing a team of engineers). Our presented framework improves

significantly upon the existing reputation systems, and delineates a systematic methodology

for improving these systems within a wide variety of settings.
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Appendix A Reputation Transferability on Amazon.com reviews

In this appendix we discuss how our approach can be used in studying the transferability

of reputation in a different setting than the one of online labor markets. In particular,

we examine how the ability to write helpful reviews on Amazon.com transfers across

various product categories. For example, if a reviewer writes great reviews about electronics,

what does this say about the reviewer’s ability to write similarly helpful reviews for other

electronic products, and also, what does it say about the reviewer’s ability to write helpful

reviews, say, for kitchen appliances? We consider a set of 11,200 reviewers that have reviewed

products in five categories: ‘Movies’, ‘Kitchen’, ‘Video’, ‘Electronics’, and ‘Music’. We

analyze a total of 78,000 reviews, collected between August 1997 and June 2011.

The metrics and analysis follow the same logic as in Section 5. Figure 14 shows the

mean absolute error (MAE) improvements for the extended model (Equation 21), for both

point estimate (PE) and random sampling (RS). We observe the same pattern as before:

LDS outperforms the Multinomial and the Binomial models, which in turn outperform the

Collaborative Filtering approach. Compared to the oDesk case, the overall improvement is

lower (but significant), ranging between 2% and 8%. The bad performance of the CF is

expected since, as we discussed earlier, Amazon reviewers have skewed histories towards

certain categories. Another observation that explains the poor performance of the CF

approach is that the input distribution of the Amazon dataset is closer to the oDesk-like

distribution of our synthetic experiment (see Figure 15).
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Figure 14 MAE Improvements in the Amazon.com dataset.

The Amazon-reviews scenario presents one main difference compared to the oDesk case.

On Amazon, we study the reputation transferability within a ‘micro skill’ ( review writing).




