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Abstract This paper addresses the repeated acquisition of labels for data items when
the labeling is imperfect. We examine the improvement (or lack thereof) in data quality
via repeated labeling, and focus especially on the improvement of training labels
for supervised induction of predictive models. With the outsourcing of small tasks
becoming easier, for example via Amazon’s Mechanical Turk, it often is possible to
obtain less-than-expert labeling at low cost. With low-cost labeling, preparing the
unlabeled part of the data can become considerably more expensive than labeling.
We present repeated-labeling strategies of increasing complexity, and show several
main results. (i) Repeated-labeling can improve label quality and model quality, but
not always. (ii) When labels are noisy, repeated labeling can be preferable to single
labeling even in the traditional setting where labels are not particularly cheap. (iii) As
soon as the cost of processing the unlabeled data is not free, even the simple strategy of
labeling everything multiple times can give considerable advantage. (iv) Repeatedly
labeling a carefully chosen set of points is generally preferable, and we present a set
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of robust techniques that combine different notions of uncertainty to select data points
for which quality should be improved. The bottom line: the results show clearly that
when labeling is not perfect, selective acquisition of multiple labels is a strategy that
data miners should have in their repertoire; for certain label-quality/cost regimes, the
benefit is substantial.

Keywords Active learning · Data selection · Data preprocessing · Classification ·
Human computation · Repeated labeling · Selective labeling

1 Introduction

There are various costs associated with the preprocessing stage of the KDD process,
including costs of acquiring features, formulating data, cleaning data and obtaining
expert labeling of data (Turney 2000; Weiss and Provost 2003). For example, in order
to build a model to recognize whether two products described on two web pages are
the same, one must extract the product information from the pages, formulate features
for comparing the two along relevant dimensions, verify that the features are correct
for these products, and label product pairs as identical or not; this process involves
costly manual intervention at several points. To build a model that recognizes whether
an image contains an object of interest, one first needs to take pictures in appropriate
contexts, sometimes at substantial cost.

This paper focuses on problems where it is possible to obtain certain (noisy) data
values (“labels”) relatively cheaply, from multiple sources (“labelers”). A main focus
of this paper is the use of these values as training labels for supervised modeling.1

For our two examples above, once we have constructed the unlabeled portion of the
data point, for relatively low cost one can obtain non-expert opinions on whether
two products are the same or whether an image contains a person or a storefront
or a building. These cheap labels may be noisy due to lack of expertise, dedication,
interest, or other factors. Our ability to perform non-expert labeling cheaply and easily
is facilitated by on-line micro-outsourcing systems, such as Amazon’s Mechanical
Turk (Snow et al. 2008)2, which match workers with arbitrary (well-defined) tasks, as
well as by creative labeling solutions like the ESP game (von Ahn and Dabbish 2004).3

These on-line outsourcing systems allow hundreds (or more) of human labelers to look
at objects (i.e., articles) and label them, using an interface such as the one in Fig. 1.
Using such marketplaces, it is possible to outsource small parts of the process at very
low cost—parts that prior to the introduction of such systems would have incurred
much higher (in-house) cost, or would have been avoided altogether.

In the face of noisy labeling, as the ratio increases between the cost of preprocessing
a data point and the cost of labeling it, it is natural to consider repeated labeling (or
re-labeling): obtaining multiple labels for some or all data points. This paper explores

1 This setting is in direct contrast to the setting motivating active learning and semi-supervised learning,
where unlabeled points are relatively inexpensive, but labeling is expensive.
2 http://www.mturk.com
3 http://www.espgame.org
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Repeated labeling using multiple noisy labelers

Fig. 1 An example of a micro-task submitted to the Amazon Mechanical Turk marketplace
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Fig. 2 Learning curves under different quality levels of training data (q is the probability of a label being
correct)

whether, when, and for which data points one should obtain multiple, noisy training
labels, as well as what to do with them once they have been obtained. Consider a data
miner facing the question of how to expend her data preprocessing budget: (i) acquiring
multiple cheap labels for existing data to reduce labeling error versus (ii) acquiring
potentially informative new data points at higher cost.

Given a data set for supervised classifier induction, ceteris paribus, noisy labels
will decrease the generalization performance of induced models (e.g., Quinlan 1986).
Figure 2 shows learning curves under different labeling qualities for the classic mush-
room data set (see Sect. 4.1). Specifically, for the different quality levels of the training
data,4 the figure shows learning curves relating the classification accuracy—which is
measured by the area under the ROC curve in this paper—of a Weka J48 model (Witten
and Frank 2005) to the number of training data. This data set is illustrative because

4 The test set has perfect quality with zero noise.
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with zero-noise labels one can achieve perfect classification after some training, as
demonstrated by the q = 1.0 curve. Figure 2 illustrates that the performance of a
learned model depends both on the quality of the training labels and on the number
of training examples. Of course if the training labels are uninformative (q = 0.5), no
amount of training data helps. As expected, for a given labeling quality (q > 0.5),
more training examples lead to better performance, and the higher the quality of the
training data, the better the performance of the learned model. However, the relation-
ship between the two factors is complex: the marginal increase in performance for
a given change along each dimension is quite different for different combinations of
values for both dimensions. To this, one must overlay the different costs of acquiring
only new labels versus whole new examples, as well as the expected improvement in
quality when acquiring multiple new labels.

This paper makes several contributions. First, under gradually weakening assump-
tions, we assess the impact of repeated-labeling on the quality of the resultant labels,
as a function of the number and the individual qualities of the labelers. We derive ana-
lytically the conditions under which repeated-labeling will be more or less effective in
improving resultant label quality. We then consider the effect of repeated-labeling on
the accuracy of supervised modeling. As demonstrated in Fig. 2, the relative advan-
tage of increasing the quality of labeling, as compared to acquiring new data points,
depends on the position on the learning curves. We show that there are times when
repeated-labeling is preferable compared to getting labels for unlabeled data items,
even in the case where one ignores the cost of obtaining the unlabeled part of a data
item. Furthermore, when we do consider the cost of obtaining the unlabeled portion,
repeated-labeling can give considerable advantage.

We present a comprehensive experimental analysis of the relationships between
quality, cost, and technique for repeated-labeling. The results show that even a straight-
forward, round-robin technique for repeated-labeling can give substantial benefit over
single-labeling. We then show that selectively choosing the data items to re-label
yields substantial extra benefit. A key question is: How should we select data points
for repeated-labeling? We argue that the uncertainty of a data item’s label is a good
indicator of where we should allocate our (repeated) labeling efforts. We present vari-
ous techniques for measuring the uncertainty, and show how these various techniques
improve over round-robin repeated labeling.

Although this paper covers a good deal of ground, there is much left to be done to
understand how best to label using multiple, noisy labelers; so, the paper closes with
a summary of the key limitations, and some suggestions for future work.

2 Related work

Repeatedly labeling the same data point is practiced in applications where labeling is
not perfect (e.g., Smyth et al. 1994a,b). We are not aware of a systematic assessment of
the relationship between the resultant quality of supervised modeling and the number
of, quality of, and method of selection of data points for repeated-labeling. To our
knowledge, the typical strategy used in practice is what we call “round-robin” repeated-
labeling, where cases are given a fixed number of labels—so we focus considerable
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attention in the paper to this strategy. A related important problem is how in practice to
assess the generalization performance of a learned model with uncertain labels (Smyth
et al. 1994b), which we do not consider in this paper. Prior research has addressed
important problems necessary for a full labeling solution that uses multiple noisy
labelers, such as estimating the quality of labelers (Dawid and Skene 1979; Donmez
et al. 2009, 2010; Smyth 1996; Smyth et al. 1994b), and learning with uncertain labels
(Lugosi 1992; Silverman 1980; Smyth 1995). Raykar et al. (2009, 2010) presented a
technique that builds on and expands this line of work, and shows how to integrate the
process of concurrently building classifier and learning the quality of the labelers. So
we treat these topics quickly when they arise, and lean on the prior work.

Repeated-labeling using multiple noisy labelers is different from multiple label
classification (Boutell et al. 2004; McCallum 1999), where one example could have
multiple correct class labels. As we discuss in Sect. 8, repeated-labeling can apply
regardless of the number of true class labels. The key difference is whether the labels are
noisy. A closely related problem setting is described by Jin and Ghahramani (2002).
In their variant of the multiple label classification problem, each example presents
itself with a set of mutually exclusive labels, one of which is correct. The setting for
repeated-labeling has important differences: labels are acquired (at a cost); the same
label may appear many times, and the true label may not appear at all. Again, the level
of error in labeling is a key factor.

The consideration of data acquisition costs has seen increasing research attention,
both explicitly (e.g., cost-sensitive learning; Turney 2000), (utility-based data mining;
Provost 2005) and implicitly, as in the case of active learning (Cohn et al. 1994).
Turney (2000) provides a short but comprehensive survey of the different sorts of costs
that should be considered, including data acquisition costs and labeling costs. Most
previous work on cost-sensitive learning does not consider labeling cost, assuming that
a fixed set of labeled training examples is given, and that the learner cannot acquire
additional information during learning (e.g., Domingos 1999; Elkan 2001; Turney
1995).

Active learning (Cohn et al. 1994) focuses on the problem of costly label acquisition,
although often the cost is not made explicit. Active learning (cf., optimal experimental
design, Whittle 1973) uses the existing model to help select additional data for which
to acquire labels (Baram et al. 2004; Margineantu 2005; Saar-Tsechansky and Provost
2004). The usual problem setting for active learning is in direct contrast to the set-
ting we consider for repeated-labeling. For active learning, the assumption is that the
cost of labeling is considerably higher than the cost of obtaining unlabeled examples
(essentially zero for “pool-based” active learning).

Some previous work studies data acquisition cost explicitly. For example, several
authors (Kapoor and Greiner 2005; Lizotte et al. 2003; Melville et al. 2004, 2005;
Saar-Tsechansky and Provost 2004; Weiss and Provost 2003; Zhu and Wu 2005)
study the costly acquisition of feature information, assuming that the labels are known
in advance. Saar-Tsechansky et al. (2009) consider acquiring both costly feature and
label information.

None of this prior work considers selectively obtaining multiple labels for data
points to improve labeling quality, and the relative advantages and disadvantages for
improving model performance. An important difference from the setting for traditional
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active learning is that labeling strategies that use multiple noisy labelers have access
to potentially relevant additional information. In our setting, each example has a label
multiset which is composed of all the labels that we have acquired for this example. The
multisets of existing labels intuitively should play a role in determining the examples
for which to acquire additional labels. For example, presumably one would be less
interested in getting another label for an example that already has a dozen identical
labels, than for one with just two, conflicting labels.

There is a relationship between our work and ensemble learning. However, there
is a crucial difference between ensemble learning and crowdsourcing: In ensemble
learning, we can create many classifiers and get each classifier to label each exam-
ple. In crowdsourcing, there is a cost every time we ask a worker to (re-)label an
example. Crowdsourcing therefore can be viewed as similar to “budget-constrained”
ensemble application, where each ensemble classification decision has a cost. There
is another, more subtle difference: in crowdsourcing, each worker has constrained
capacity; worker contributions tend to follow a power-law distribution: a large num-
ber of workers contribute just a few labels, which makes the estimation of their quality,
biases, etc. more challenging.

One specific area of research applying ensembles is particularly closely related:
research on noise elimination/mitigation using ensembles. Brodley and Friedl (1999)
apply a set of learning algorithms to create an ensemble of classifiers. They decide
that certain instances are likely noise and filter them from the data by analyzing the
estimations of the classifiers as well as the reported class label. Verbaeten and Assche
(2003) study a number of filtering techniques based on ensemble methods like cross-
validated committees, bagging and boosting. Rebbapragada and Brodley (2007) use
clustering to estimate probabilities over the class labels and then use the confidence
on the reported label as a weight during training to mitigate noise in the data.

The work presented in this paper is an extension to a previously published con-
ference paper (Sheng et al. 2008). In the present paper, we present and evaluate two
additional algorithms for selectively allocating labeling effort (NLU and NLMU; see
Sects. 6.3 and 6.4). These new algorithms have better theoretical justification and
often outperform the techniques in (Sheng et al. 2008). The results in this paper are all
new, although many qualitative conclusions are the same as in the conference version.
Specifically, in this paper we use as measure of predictive performance the area under
the ROC curve (AUC), which is a more robust indicator of performance than the accu-
racy metric that we used in (Sheng et al. 2008), especially for imbalanced data sets.
Additional completely new results include the following. In Sect. 6.4.1 we provide a
justification why a technique that relies purely on model uncertainty can improve data
quality and predictive performance; this contrasts with the implication in (Sheng et
al. 2008) that the reason it works is because it is essentially doing active learning. We
also present extensive experimental results that demonstrate when soft-labeling (see
Sect. 3.3 for definition) can be beneficial in a setting with noisy labelers (Sect. 5.3) and
examine the effect of weighted sampling for selecting examples to label (Sect. 6.6.2).
In addition, we show the performance our proposed strategies on a real-world data set.

Since the publication of the conference paper, a significant amount of work has
been published in the area. Donmez and Carbonell (2008) presented an active learning
model where the labelers are imperfect, have expertise on different parts of the space,
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and have various costs, depending on the uncertainty of the labeler: Donmez et al.
focus on the problem of selecting the labelers to ask for given examples. In contrast
to our work, Donmez and Carbonell (2008) do not use repeated labeling to improve
the quality of the data. In subsequent extensions, Donmez et al. (2009, 2010) learn the
labeler quality in order to better guide the labeling strategy and show that techniques
that exploit the labeler quality perform better than the round robin repeated labeling
strategy (see Sect. 5). [There is no comparison against the selective labeling strategies
that we presented in (Sheng et al. 2008) and which we also discuss in Sect. 6.]

Carpenter (2008) presented a Bayesian model for estimating the quality of the
labelers, and Whitehill et al. (2009) presented a graphical model in which both labelers
vary in quality and the examples have varying degree of difficulty for being classified.
Ipeirotis et al. (2010) described an algorithm that measures the inherent quality of a
labeler using a scalar metric that takes into consideration the misclassification costs and
also separates the error computation from the potential biases exhibited by the labelers.
Again, the focus is not on cost-sensitive acquisition of data, but rather on building
Bayesian models that account for the expertise of the workers and the difficulty of
labeling given examples.

3 Repeated labeling: the basics

Figure 2 illustrates that the quality of the labels can have a marked effect on classifi-
cation accuracy. Intuitively, using repeated-labeling to shift from a lower-q curve to
a higher-q curve can, under some settings, improve learning considerably. In order to
treat this more formally, we first introduce some terminology and simplifying assump-
tions.

3.1 Notation and assumptions

We consider a problem of supervised induction of a (binary) classification model. The
setting is the typical one, with some important exceptions. For each training example
〈yi , xi 〉, procuring the unlabeled “feature” portion, xi , incurs cost CU . The action of
labeling the training example with a label yi incurs cost CL . For simplicity, we assume
that each cost is constant across all examples. Each example 〈yi , xi 〉 has a true label
yi , but labeling is error-prone. Specifically, each label yi j comes from a labeler j
exhibiting an individual labeling quality p j , which is Pr(yi j = yi ); since we consider
the case of binary classification, the label assigned by labeler j will be incorrect with
probability 1 − p j .

In the current paper, we work under a set of assumptions that allows us to focus
on a certain set of problems that arise when labeling using multiple noisy labelers.
First, we assume that Pr(yi j = yi |xi ) = Pr(yi j = yi ) = p j , that is, individual
labeling quality is independent of the specific data point being labeled. Second, we
assume labelers are conditionally independent from each other. Note that we do not
assume that all labelers have the same quality: each labeler has an individual quality
p j . We sidestep the issue of knowing p j : the techniques we present do not rely on
this knowledge and are largely agnostic about the quality of the labelers. Inferring p j
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accurately should lead to improved techniques; Dawid and Skene (1979) and Smyth
et al. (1996, 1994b) have shown how to use an expectation-maximization framework
for estimating the quality of labelers. We also assume for simplicity that each labeler
j only gives one label, but that is not a restrictive assumption in what follows. We
further discuss limitations and directions for future research in Sect. 8.

3.2 Majority voting and label quality

To investigate the relationship between labeler quality, number of labels, and the overall
quality of labeling using multiple labelers, we start by considering the case where, for
induction, each repeatedly-labeled example is assigned a single “integrated” label ŷi ,
inferred from the individual yi j ’s by majority voting. For simplicity, and to avoid
having to break ties, we assume that we always obtain an odd number of labels. The
quality qi = Pr(ŷi = yi ) of the integrated label ŷi will be called the integrated quality.
Where no confusion will arise, we will omit the subscript i for brevity and clarity.

Consider first the case where all labelers are independent and exhibit the same
quality, that is, p j = p for all j . (We would like to stress that the techniques in the
paper do not rely on this assumption and here we just want to illustrate the improvement
in quality when using repeated labeling.). Using 2N +1 labelers with uniform quality
p, the integrated labeling quality q is:

q = Pr(ŷ = y) =
N∑

i=0

(
2N + 1

i

)
· p2N+1−i · (1 − p)i (1)

which is the sum of the probabilities that we have more correct labels than incorrect
(the index i corresponds to the number of incorrect labels).

Not surprisingly, from the formula above, we can infer that the integrated quality
q is greater than p only when p > 0.5. When p < 0.5, we have an adversarial setting
where q < p, and, not surprisingly, the quality decreases as we increase the number
of labelers.

Figure 3 demonstrates the analytical relationship between the integrated quality
and the number of labelers, for different individual labeler qualities. As expected, the
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Fig. 4 Improvement in integrated quality compared to single-labeling, as a function of the number of
labelers, for different labeler qualities

integrated quality improves with larger numbers of labelers, when the individual label-
ing quality p > 0.5; however, the marginal improvement decreases as the number of
labelers increases. Moreover, the benefit of getting more labelers also depends on the
underlying value of p. Figure 4 shows how integrated quality q increases compared
to the case of single-labeling, for different values of p and for different numbers of
labelers. If labeler quality is too high, there is very little room for improvement; if
labeler quality is too low, each additional labeler provides limited additional informa-
tion. In both cases, not much is gained from having more labelers. Therefore, we would
expect multiple labeling methods to be most beneficial when labelers have moderate
quality (e.g., p = 0.6; p = 0.7). For example, when p = 0.9, there is little benefit
when the number of labelers increases from 3 to 11. However, when p = 0.7, going
just from single labeling to three labelers increases integrated quality by about 0.1,
which in Fig. 2 would yield a substantial upward shift in the learning curve (from the
q = 0.7 to the q = 0.8 curve); in short, a small amount of repeated-labeling can have
a noticeable effect for moderate levels of noise.

Therefore, for cost-effective labeling using multiple noisy labelers we need to con-
sider: (a) the effect of the integrated quality q on learning, and (b) the number of
labelers required to increase q under different levels of labeler quality p; we will
return to this later, in Sects. 5 and 6.

3.3 Uncertainty-preserving labeling

Majority voting is a simple and straightforward method for integrating the informa-
tion from multiple labels, but clearly with its simplicity comes a potentially serious
drawback: information is lost about label uncertainty (LU). In principle, an alternative
is to move to some form of “soft” labeling, with the multiset of labels resulting in a
probabilistic label (for example Smyth 1995). One concern with soft labeling is that
even in cases where, in principle, modeling techniques should be able to incorpo-
rate soft labeling directly (which would be true for techniques such as naive Bayes,
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logistic regression, tree induction, and beyond), existing software packages do not
accommodate soft labels. Fortunately, we can finesse this.

Consider the following straightforward method for integrating labels from multiple
labelers. For each unlabeled example xi , the multiplied examples (M E) procedure
considers the multiset of existing labels Li = {yi j }. ME creates one replica of xi

labeled by each unique label appearing in Li . Then, for each replica, ME assigns a
weight 1/|Li |, where |Li | is the number of occurrences of this label in Li . Alternative
ways of integrating the labels may rely on computing the uncertainty about the class
of the example and assigning the weights appropriately. These weighted replicas can
be used in different ways by different learning algorithms: for instance, in algorithms
that take weights directly, such as cost-sensitive tree (Ting 2002), or in techniques like
naive Bayes that naturally incorporate uncertain labels. Moreover, any importance-
weighted classification problem can be reduced to a uniform-weighted classification
problem (Zadrozny et al. 2003), often performing better than hand-crafted weighted-
classification algorithms. We examine the effect of uncertainty-preserving labeling
(a.k.a. “soft labeling”) in Sects. 5.3 and 6.6.1.

4 Experimental setup and design

The previous section examined when repeated-labeling can improve data quality. We
now consider when repeated-labeling should be chosen for modeling. What is the
relationship to label quality? (Since we see that for p = 1.0 and p = 0.5, repeated-
labeling adds no value.) How cheap (relatively speaking) does labeling have to be?
For a given cost setting, is repeated-labeling much better or only marginally better?
Can selectively choosing data points to label improve performance?

4.1 Experimental setup

Practically speaking, the answers to these questions rely on the empirical distributions
being modeled, and so we shift to an empirical analysis based on experiments with
both simulated and real labelers.

To investigate the questions above, we first present experiments on 8 real-world data
sets from (Blake and Merz 1998) and (Zheng and Padmanabhan 2006). These data
sets were chosen because they are classification problems with a moderate number of
examples, allowing the development of learning curves based on a large numbers of
individual experiments. Furthermore, we use only data sets for which the performance
(AUC) was above 0.7 running with cross-validation on the original full data set—so that
there is room to differentiate different labeling strategies. The data sets are described in
Table 1. If necessary, we convert the target to binary (for thyroid we keep the negative
class and integrate the other three classes into positive; for splice, we integrate classes
IE and EI; for waveform, we integrate classes 1 and 2).

For each data set, 30 % of the examples are held out, in every run, as the test set from
which we calculate generalization performance. The rest is the “pool” from which we
acquire unlabeled and labeled examples. To simulate noisy label acquisition, we first
hide the labels of all examples for each data set. At the point in an experiment when
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Table 1 The eight data sets
used in the experiments: the
numbers of attributes and
examples in each, and the split
into positive and negative
examples

Data set #Attributes #Examples Pos Neg

kr-vs-kp 37 3,196 1,669 1,527

mushroom 22 8,124 4,208 3,916

sick 30 3,772 231 3,541

spambase 58 4,601 1,813 2,788

splice 61 3,190 1,535 1,655

thyroid 30 3,772 291 3,481

tic-tac-toe 10 958 332 626

waveform 41 5,000 1,692 3,308

a label is acquired, we generate a label according to the labeler quality p: we assign
the example’s original label with probability p and the opposite value with probability
1 − p.

After obtaining the labels, we add them to the training set to induce a classifier.
For the results presented, models are induced with J48, the implementation of C4.5
(Quinlan 1992) in WEKA (Witten and Frank 2005). The classifier is evaluated on the
test set (with the true labels). Each experiment is repeated 50 times with a different
random data partition, and average results are reported.

4.2 Design choices for repeated labeling

In our experimental setup, we examine a set of basic design choices that can be varied
to create different repeated labeling algorithms. Specifically, the design choices that
we explore are the following:

– Choice of next example to (re-)label:
– Selection policy: The choice of the next example to (re-)label is based on
a policy that determines the priority (e.g., uncertainty score) with which we
choose the next example. First, in Sect. 5 we explore policies that assume
uniform prioritization across all examples. In Sect. 6 we examine versions that
use heterogeneous (and dynamic) prioritization schemes.
– Deterministic versus Sampled order: Is the choice of the next example to
(re-)label based on a deterministic order or is the next example sampled from a
distribution over the data set? While the selection policy computes the labeling
priority of each example, the deterministic/sampled order reflects the way that
this information is utilized. For deterministic order, we choose the examples
with highest uncertainty scores; for sampled order, each example is sampled
probabilistically, with a probability proportional to its uncertainty (Sect. 6.6.2).
Most of the results in this paper are based on deterministic order, but we also
explore sampling schemes in Sect. 6.6.2.

– Choice of labeling scheme: Use a “hard” label for each example, inferred using
majority voting? Or use a “soft” label that preserves the uncertainty about the
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class label? We examine the effect of uncertainty-preserving labeling (a.k.a. “soft
labeling”) in Sects. 5.3 and 6.6.1.

5 Basic repeated-labeling strategies

Figure 5 shows the learning curves for the mushroom data set. As a case in point,
assume that we have processed 50 examples with quality q = 0.8; we have different
choices for how to proceed. The two basics choices are: (i) get more examples with a
single label each (horizontal arrow), or (ii) improve the quality of the existing examples
by repeatedly labeling the existing examples (vertical arrow).

We call the first strategy single labeling (SL): getting as many examples as possible,
one label for each example. The second strategy is the most straightforward repeated
labeling strategy: assign additional labels to the labeled examples, in a round-robin
fashion. We can keep adding labels to a fixed number of examples, until exhausting
our labeling budget. We call this strategy fixed round-robin (FRR in short). The FRR
strategy strategy corresponds to the vertical arrow in Fig. 5. A slight generalization of
FRR is to always give the next label to the example with the fewest labels; we call this
labeling strategy generalized round-robin (GRR in short). For the experiments below,
we assume that we receive a new example every k labels, so in this case GRR simply
assigns k labels to each new example. We evaluate these basic labeling strategies (SL,
FRR, and GRR) in the next sections.

5.1 Fixed round-robin strategy FRR

We assume for this section that we select randomly a fixed set of examples from the
unlabeled pool and FRR repeated-labeling re-labels examples in a fixed round-robin
fashion: Specifically, given a fixed set L of to-be-labeled examples (a subset of the
entire set of examples) the next label goes to the example in L with the fewest labels,
with ties broken according to some rule (in our case, by cycling through a fixed order).
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Fig. 5 Learning curves under different quality levels of training data (q is the probability of a label being
correct)
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Fig. 6 Comparing the increase
in accuracy for the mushroom
data set as a function of the
number of labels acquired, when
the cost of an unlabeled example
is negligible. The simplest
repeated-labeling strategy FRR
with majority vote starts with an
existing set of examples and
only acquires additional labels
for them, and single labeling
(SL) acquires additional
examples. Other data sets show
similar results 0.5
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Figure 6 shows the generalization performance of FRR with majority vote, com-
pared to that of single labeling, SL, as a function of the number of labels acquired for
a fixed labeler quality. Both FRR and SL start with the same number of single-labeled
examples. Then, FRR starts acquiring additional labels only for the existing examples,
while SL acquires new examples and labels them (once).

Generally, the decision regarding whether to invest in another whole training exam-
ple or another label depends on the gradient of generalization performance, as a func-
tion of obtaining another label or a new example. (We will return to this when we
discuss future work.) Figure 6 shows, for our example problem, scenarios where each
strategy is preferable to the other. Consider Fig. 6a. From Fig. 2 we see that for p = 0.6,
and with 100 examples, there is a lot of headroom for repeated-labeling to improve
generalization performance by improving the overall labeling quality. Figure 6a indeed
shows that for p = 0.6, repeated-labeling does improve generalization performance
(per label) as compared to single-labeling new examples. On the other hand, for high
initial quality or steep sections of the learning curve, FRR may not compete with single
labeling. Figure 6b shows that single labeling performs better than FRR when we have
a fixed set of 50 training examples with labeling quality p = 0.8. Particularly, FRR
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could not further improve its performance after a certain amount of labeling (cf., the
q = 1 curve in Fig. 2). This happens because each of the fixed set of examples ends
up having perfect quality (so further repeated labeling cannot help) and the size of the
fixed example set (for training) simply is not sufficient to reach higher accuracy.

The results for other data sets are similar to Fig. 6: under noisy labels, the fixed
round-robin repeated-labeling FRR can perform better than single-labeling when
there are enough training examples, i.e., after the learning curves are not so steep
(cf., Fig. 2).

5.2 Generalized round-robin strategies GRR, introducing costs

We illustrated above that repeated-labeling (viz., FRR) is a viable alternative to single-
labeling, when the labels that we get are noisy. In our comparison of FRR with SL, we
effectively ignored the cost of acquiring the “feature” part of each new example for SL.
However, as described in the introduction, often the cost of (noisy) label acquisition
CL is low compared to the cost CU of acquiring an unlabeled example. In this case,
clearly repeated-labeling should be considered: using multiple labels can shift the
learning curve up significantly.

We now study the setting where we have the choice of either:

– acquiring a new training example for cost CU +CL , (CU for the unlabeled portion,
and CL for the label), or

– get another label for an existing example for cost CL .

To compare any two strategies on equal footing, we calculate generalization per-
formance “per unit cost” of acquired data; we then compare the different strategies
for combining multiple labels, under different individual labeling qualities. We start
by defining the data acquisition cost CD:

CD = CU · Tr + CL · NL (2)

to be the sum of the cost of acquiring Tr unlabeled examples (CU ·Tr ), plus the cost of
acquiring the associated NL labels (CL · NL). For single labeling we have NL = Tr ,
but for repeated-labeling NL > Tr .

We extend the setting of Sect. 5.1 slightly and we consider the generalized round-
robin strategy, GRR, which can acquire and label new examples; single labeling SL is
unchanged. For each new example acquired, repeated labeling acquires a fixed number
of labels k, and in this case NL = k · Tr . Thus, for GRR, in these experiments the
cost setting can be described compactly by the cost ratio ρ = CU

CL
, and in this case

CD = ρ · CL · Tr + k · CL · Tr , i.e.,

CD ∝ ρ + k (3)

Figure 7 shows the generalization performance of the GRR round-robin repeated-
labeling strategy with majority vote compared to that of single labeling SL, as a function
of data acquisition cost. Figure 7a shows the case where the unlabeled part of a new
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Fig. 7 Comparing the increase
in accuracy for the mushroom
data set as a function of data
acquisition cost. SL is single
labeling; GRR is generalized
round-robin repeated-labeling,
acquiring one new training
example at a time, and using
majority voting. Other data sets
show similar results
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example is still free (ρ = 0, i.e., CU = 0) for both GRR and SL. Here we just have
in the horizontal axis the data acquisition cost instead of the number of labels. In this
example, GRR gets ten labels per example. For the same cost, SL gets ten examples.
In this higher noise scenario, it is much better to get examples with ten labels, as
this reduces significantly the noise. Another issue is the size of the pool of available
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examples. For the mushroom data set, we have eight thousands examples; so, SL runs
out of examples to label and this is the reason for the early termination shown in the
SL curve. This case shows that GRR can be better than single labeling even when the
labels are not particularly cheap.

Figure 7b, c illustrates scenarios where there is a cost for obtaining the unlabeled
part of the example, with ρ = 3, k = 5 and ρ = 10, k = 12, respectively. We can
see that GRR outperforms SL substantially, even though GRR allocates a significant
amount of resources to re-labeling the examples. The results are similar across other
data sets, in high-noise settings.

The high-level conclusion: as the cost ratio ρ increases, the improvement of GRR
over SL also increases. So when the labeler quality is low, and the labels actually
are cheap, we can actually get substantial advantage from using a repeated labeling
strategy, such as GRR.

5.3 Different label integration methods

In all experiments shown above, both for FRR and GRR, we use majority voting for
creating the integrated label from multiple labels. Obviously, some information (such
as label uncertainty) is lost during this process. Soft labeling (described above) does
not lose this information, and therefore may improve performance. In this section, we
examine these two label integration methods (majority voting and soft labeling) by
applying them to GRR. GRR with majority voting is called MV for short, and GRR
with soft labeling is called ME for short. For ME, we generate multiple examples to
preserve the uncertainty of the label multiset as described in Sect. 3.3.

Figure 8 plots the generalization accuracy of the models as a function of data
acquisition cost. Here ρ = 3, k = 5, and we see very clearly that, for p = 0.6, both
versions of repeated-labeling are preferable to single labeling. MV and ME outperform
SL consistently (on all but waveform, where MV ties with SL) and, interestingly, the
comparative performance of repeated-labeling tends to increase as one spends more
on labeling. Furthermore, from the results in Fig. 8, we can see that the uncertainty-
preserving repeated-labeling ME outperforms MV in all cases, to greater or lesser
degrees.

In other results (not shown) we see that when labeling quality is substantially higher
(e.g., p = 0.8), repeated-labeling still is increasingly preferable to single labeling as
ρ increases; however, we no longer see an advantage for ME over MV. These results
suggest that when labeler quality is low, inductive modeling often can benefit from
the explicit representation of the uncertainty incorporated in the multiset of labels for
each example. When labeler quality is relatively higher, this additional information
apparently is superfluous, and straight majority voting is sufficient.

6 Selective repeated-labeling strategies

So far, we have considered repeated labeling as a uniform process across all exam-
ples. Now, we examine (i) whether selective allocation of labeling resources can fur-
ther improve performance, and (ii) if so, how should the examples be selected. For
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Fig. 8 Increase in model accuracy as a function of data acquisition cost for the eight data sets; (p =
0.6, ρ = 3, k = 5). SL is single labeling; MV is repeated-labeling with majority voting, and ME is
uncertainty-preserving repeated-labeling. Both MV and ME are based on GRR
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Fig. 9 What not to do: data
quality improvement for an
entropy-based selective
repeated-labeling strategy versus
round-robin repeated-labeling
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example, intuitively it would seem better to augment the label multiset {+,−,+} than
to augment {+,+,+,+,+}.

6.1 What not to do

The example above suggests a straightforward procedure for selective repeated-
labeling: acquire additional labels for those examples where the current multiset of
labels is impure. Two natural measures of purity are:

– the entropy of the multiset of labels, and
– how close the frequency of the majority label is to the decision threshold (here,

0.5).

For our binary classification setting, these two measures generate the same exam-
ple ranking. Unfortunately, there is a clear problem: under noise these measures do
not really measure the uncertainty in the estimation of the class label. For example,
{+,+,+} is perfectly pure, but the true class is not certain (e.g., with p = 0.6 one is
not 95 % confident of the true label). Applying a small-sample shrinkage correction
(e.g., Laplace) to the probabilities is not sufficient.

Figure 9 (dashed line) demonstrates how labeling quality increases as a function of
assigned labels, using the (Laplace-corrected) entropy-based estimation of uncertainty
(ENTROPY ). For small amounts of repeated-labeling, the ENTROPY technique does
indeed select useful examples to label, but the fact that the estimates are not true
estimates of uncertainty hurts the procedure in the long run—generalized round-robin
repeated-labeling (GRR) from Sect. 5 outperforms the entropy-based approach. This
happens because with ENTROPY most of the labeling resources are wasted, with the
procedure labeling a small set of examples very many times. Note that with a high
level of noise, the long-run label mixture will be quite impure, even though the true
class of the example may be quite certain (e.g., consider the case of 600 positive labels
and 400 negative labels with p = 0.6). Less impure, but incorrect, label multisets are
never revisited.
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6.2 Estimating label uncertainty (LU) using example-specific labeler quality

Instead, of relying on entropy measurements, we introduce a different approach: For
a given multiset of labels, we compute a Bayesian estimate of the labeling quality
uncertainty (LU) for each example. LU computes the uncertainty in true label of the
integrated label under the following assumptions (some of which will be relaxed in
the next section):

– All labelers have the same quality, when labeling a given example.5

– The labeling quality is always above 0.5 (i.e., we do not have adversarial labelers).
– We presume the prior distribution over the true label (quality) p(y) to be uniform

in the [0.5, 1] interval, but given that we do not know the true label y, the prior
distribution over p(y) becomes effectively uniform in the [0, 1] interval.

Labeling based on LU focuses the labeling efforts on examples for which we are
uncertain about the quality of labeling, which given the assumptions, proxies for
uncertainty in the true label. Specifically, we would like to estimate the uncertainty
that the p(y) of the example is on the “correct side” of the labeling decision threshold
(and, therefore, that the majority of the votes also correspond to the correct label).

Consider a Bayesian estimation of the probability that ym is incorrect. Here we
do not assume that we know (or have estimated well) the labeler quality. Thus, after
observing p positive labels and n negative labels, the posterior probability p(y) follows
a Beta distribution B(p + 1, n + 1) (Gelman et al. 2003). LU computes the level of
uncertainty as the tail probability below the labeling decision threshold. Formally,
the uncertainty is equal to the CDF at the decision threshold of the Beta distribution,
which is given by the regularized incomplete beta function:

Ix (α, β) =
α+β−1∑

j=a

(α + β − 1)!
j !(α + β − 1 − j)! x j (1 − x)α+β−1− j (4)

In our case, the decision threshold is x = 0.5, and α = p + 1, β = n + 1. Thus,
we set:

SLU = min{I0.5(p + 1, n + 1), 1 − I0.5(p + 1, n + 1)} (5)

We compare selective repeated-labeling based on SLU to round-robin repeated-
labeling (GRR), which we showed to perform well in Sect. 5. To compare repeated-
labeling strategies, we followed the experimental procedure of Sect. 5, with the
following modification. Since we are asking whether LU can help with the selection
of examples for which to obtain additional labels, each training example starts with
three initial labels (selected as above). Then, each repeated-labeling strategy iteratively
selects examples for which it acquires additional labels (since we need odd number
of labels to use majority voting, we add two labels at a time in these experiments).

5 We do not assume that the quality is the same across all examples. In fact, LU indirectly relies on the
assumption that the labeling quality is different across examples.
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Fig. 10 The data quality
improvement of the four
strategies (GRR, LU, MU, and
LMU) for the waveform data set
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Comparing selective repeated-labeling using SLU
6 to GRR, we observed similar

patterns across all twelve data sets; therefore we only show the results for the waveform
data set (Fig. 10; ignore the MU and LMU lines for now, we discuss these techniques
below), which are representative. The results indicate that LU performs better than
GRR, identifying the examples for which repeated-labeling is more likely to improve
quality.

6.3 Estimating example-specific label uncertainty directly

The assumptions behind the LU method are approximately satisfied in many situa-
tion, but are violated dramatically in one common setting: in the data, at least one
class appears very infrequently. In this case, it may be the case that even intelligent,
rational labelers are technically adversarial—i.e., their labeling quality for an infre-
quently appearing class is below 0.5. For example, they may be performing a Bayesian
estimation of the class label and the prior on the true class is simply too small.

6 As a shorthand we will simply call that Label Uncertainty (LU).
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Instead of relying on the assumption of non-adversarial labelers, we can estimate
the uncertainty of the integrated label directly, taking advantage of the estimation of
the labeler quality distribution just computed (Sect. 6.2). Specifically, suppose that we
have an example that has been labeled l p + ln times, receiving l p positive labels and ln
negative ones. If we had available the quality of the labelers p (assuming for simplicity
a common p; labeler-and-example-specific pi, j would entail the natural expansion),
it is straightforward to compute the probability Pr(yi |l p, ln), i.e., infer the true label
given the l p positive labels and ln negative labels. Specifically, we have:

Pr(+|l p, ln) = Pr(l p, ln|+) · Pr(+)

Pr(l p, ln)
= pl p · (1 − p)ln Pr(+)

Pr(l p, ln)

Pr(−|l p, ln) = Pr(l p, ln|−) · Pr(−)

Pr(l p, ln)
= pln · (1 − p)l p

Pr(−)

Pr(l p, ln)
(6)

In reality, the labeler quality p is unknown. However, given a sequence of l p positive
labels and ln negative labels, we can apply Bayesian estimation to compute the distrib-
ution of possible values for p. After seeing l p positive and ln negative labels, the quality
p, for that example follows a beta distribution. The distribution is B(l p + 1, ln + 1) if
l p > ln , or follows a beta distribution B(ln + 1, l p + 1) if l p < ln . In other words:

Pr(q) =
⎧
⎨

⎩

Γ (l p + ln+2)

Γ (l p + 1)Γ (ln + 1)
· ql p · (1 − q)ln : l p ≥ ln

Γ (l p + ln+2)

Γ (l p + 1)Γ (ln + 1)
· qln · (1 − q)l p : l p < ln

(7)

Assuming l p ≥ ln , and without loss of generality, we use the derivation of Pr(+|l p, ln)

from above, and integrate over all possible values of p:

Pr(+|l p, ln) = Pr(l p, ln|+) · Pr(+)

Pr(l p, ln)

=
∫ 1

0
ql p · (1 − q)ln Pr(+)

Pr(l p, ln)
Pr(q)dq

= Pr(+)

Pr(l p, ln)

∫ 1.0

0
ql p · (1−q)ln · Γ (l p+ln +2)

Γ (l p+1)Γ (ln +1)
· ql p · (1−q)ln dq

= Pr(+)

Pr(l p, ln)
· Γ (l p + ln + 2)

Γ (l p + 1)Γ (ln + 1)

∫ 1

0
q2l p · (1 − q)2ln dq

= Pr(+)

Pr(l p, ln)
· Γ (l p + ln + 2)

Γ (l p + 1)Γ (ln + 1)

Γ (2ln + 1)Γ (2l p + 1)

Γ (2 + 2ln + 2l p)

and similarly for Pr(−|l p, ln). Using Pr(+|l p, ln) and Pr(−|l p, ln), and for l p ≥ ln
we get:

Pr(+|l p, ln) =
(

1 + 1 − Pr(+)

Pr(+)
·

(
Γ (ln + l p + 1)

)2

Γ (2ln + 1) · Γ (2l p + 1)

)−1

(8)
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Since l p and ln are integers, and Γ (k) = (k − 1)! for k ∈ N , we have:

Pr(+|l p, ln) =
(

1 + 1 − Pr(+)

Pr(+)
·

(
(ln + l p)!

)2

(2ln)! · (2l p)!

)−1

(9)

where l p is the number of positive labels, ln is the number of negative labels (with
l p ≥ ln), Pr(+) is the prior probability for the positive class, and Γ (·) is the Gamma
function. (For l p < ln , it is symmetric.) So, our New Label Uncertainty (NLU) metric
should be now SN LU = min{Pr(+|l p, ln), 1 − Pr(+|l p, ln)}.

From Eq. 9, we can see that we need to know the prior probability Pr(+) to calculate
the posterior probability Pr(+|l p, ln), which is typically unknown. However, we can
use a marginal maximum likelihood algorithm, to estimate Pr(+):

1. Pick a random prior for positive class (e.g., Pr(+) = 0.5)
2. Compute the conditional probabilities Pr(xi = +|l p, ln) for each example xi ,

using the current prior estimate
3. Compute the Pr(+) as the average value of Pr(xi = +|l p, ln)

4. Go to step 2 (stopping when some criterion is reached)

Experiments show that NLU improves LU, in terms of labeling quality and the model
performance (accuracy), on the data sets where the class distribution is unbalanced,
such as sick and thyroid (Fig. 11). For the data sets (kr-vs-kp, mushroom, spambase,
splice, tic-tac-toe, and waveform), NLU has a similar performance to LU (Fig. 12).
The results indicate that LU works well for balanced data sets, as suggested by the
discussion above—for balanced data sets the assumptions behind the calculation of
LU are likely to be satisfied. However, for unbalanced data sets, the non-adversarial
assumption behind LU is likely to be violated. In this case, the direct uncertainty
estimation of NLU—which does not make the non-adversarial assumption, and instead
takes into consideration the prior class distribution during the uncertainty estimation—
should improve the results. The experiments demonstrate that it indeed does so.

We can also compare the performance of LU and NLU based on their ability to iden-
tify and separate the correctly and incorrectly labeled examples. Ideally, all incorrectly
labeled examples should have higher uncertainty scores than the correctly labeled ones.
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Fig. 11 Comparing the strategies (NLU and NLMU) with their previous version (LU and LMU) in terms
of the improvement of integrated labeling quality on imbalanced data sets (sick and thyroid)
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Fig. 12 Comparing the strategies (NLU and NLMU) with their previous version (LU and LMU) in terms
of the improvement of integrated labeling quality on balanced data sets (kr-vs-kp and mushroom)

The method that better separates the two classes will be a better choice. In order to
examine the differences of LU and NLU, we employ the Mann-Whitney-Wilcoxon
(MWW) test, a non-parametric test for assessing whether two independent samples of
observations can be separated. Specifically, we conduct the following experiment:

1. Pick a random prior for the positive class (e.g., Pr(+) = 0.7)
2. Generate n positive and negative examples (in our case, n = 300), following the

prior value from the previous step.
3. Assign three initial labels to each example; the labeler quality is p.
4. Assign two labels to each of the 10 examples selected by the GRR strategy.7

5. Compute the uncertainty scores for LU, and NLU; also, we compute the “Gold”
uncertainty score, which assumes knowledge of the quality of the labelers and
uses Eq. 6 to compute the uncertainty for each example. Note that this is the best
possible uncertainty metric that we can have when we only know about the multiset
of the assigned labels.

6. Compute the uncertainty scores for correctly and incorrectly labeled examples, and
compute the MWW statistic for the two sets of points (the correctly and incorrectly
labeled examples). Higher values of MWW indicate better separating ability.

7. Go to step 4 until the total number of labels are used up.

Figure 13 gives us the results of the experiment. When the dataset is balanced (i.e.,
(Pr(+) ≈ 0.5), the performance of LU, NLU, and Gold are similar. This indicates that
LU and NLU, are almost optimal. However, in imbalanced data sets, NLU outperforms
LU by a wide margin. NLU has a performance much closer to Gold, especially when
we have only a few labels per example.

These results lead to a striking conclusion: at least as far as these experiments can
be generalized, NLU is getting most of the information that is possible out of the label
multisets alone. If we want to improve selective repeated labeling substantially over
NLU, we need to turn to a different source of information.

7 We do not use selective labeling strategies for this experiment, as we want to keep the labeling allocation
strategy constant, and independent of the two uncertainty scoring strategies. The goal is to see which
uncertainty score can separate best the correctly from the incorrectly labeled examples.
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Fig. 13 MWW statistic for three uncertainty scores (LU, NLU and Gold) and the corresponding labeling
quality (p = 0.6)

6.4 Using model uncertainty

The two techniques described above, LU and NLU, assume that the different examples
that are being labeled are independent of each other. In other words, the labels assigned
to one example do not give any information about the labels that should be assigned
to a different example. However, in many settings we already may be assuming that
similar examples will be labeled similarly—that’s a key assumption behind our using
supervised learning methods to build predictive models.

Let us now turn to a method for taking advantage of this assumption to improve
selective repeated labeling. Consider the following idea. Assume that examples are
labeled similarly, to some extent, to the examples “near” to them in example space.
Machine learning provides many ways to define nearness. For the sake of concreteness
in our discussion, let’s assume that there are different regions of the example space
(that can be found by a machine learning method), and within these regions examples
have some probability of belonging to the class that is different from that of the
overall population. For simplicity, let’s assume that examples are generated at random
from these regions (possibly based on a region-specific sampling rate), and that this
comprises the complete data-generating process. This mimics the assumption, for
example, that would justify many classification tree and rule-learning methods.

Now, what happens if one or more training examples is drawn from a particular
region and mis-labeled? In this case, in expectation the resultant learned model will
give a slightly different estimated probability of class membership for the examples
in that region than if all the training data were labeled correctly. And in expectation,
the probability is more likely than not to move away from certainty—i.e., toward the
region’s minority class. (Because the mis-labeled example is more likely than not to be
of the region’s majority class!) Thus, we may be able to find mislabeled examples for
relabeling by looking for examples for which a learned model has more uncertainty
in its labeling.
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This idea seems very similar to, and in fact was inspired by, active learning. How-
ever, it works for a very different reason (which we will demonstrate below). Unlike
traditional active learning, which builds models from the labeled examples and uses
these models to predict the uncertainty of each unlabeled example, our MU strat-
egy applies a strategy similar to that of Brodley and Friedl (1999), but different in an
important way which we will describe presently. It builds models on the noisy data and
uses the models to predict the uncertainty of each example within these same noisy
data. (Contrast this with active learning, where the model is applied to a different,
unlabeled set of data.)

So, specifically, we learn a classification model using the existing labeled examples,
and use the resulting classifier to get information about the model’s uncertainty in the
class for each of these same examples. One can envision different ways to instantiate
this approach. We devise and experiment with a simple one here: producing a mea-
sure of “model uncertaintly” for an example. An example becomes a candidate for
(re-)labeling when a learned model’s uncertainty about its class is high.

More specificaly, the measure Model Uncertainty (MU) ignores the current multiset
of labels. It learns a model to estimate the probability of class membership for each
example. The MU score is computed as:

SMU = 0.5 − |Pr(+|x, H) − 0.5| (10)

where Pr(+|x, H) is the probability of classifying the example x into + by the learned
model H .

As we will show more formally next, MU is well justified under the simplifying
assumptions we have discussed. Whether it works in real-world settings is an empirical
question.

Proposition 1 Assume that data are generated by region of the example space, as
described above, and given a classifier that estimates the probability of binary class
membership P̂r(+|x ∈ r) for any region r of the example space better than random
guessing. Ceteris paribus, in expectation, the training examples in a region of the
space with a mislabeled training example are more likely to have a higher SMU than
those in a region with no mislabeled example. Therefore, in expectation, a mislabeled
training example is likely to be selected for relabeling by MU before the examples in
all regions with no mislabeled training examples.

Proof sketch Consider N regions of the example space R, r1, r2, . . . , rN ∈ R, which
satisfy Pr(+|x ∈ r1) = Pr(+|x ∈ r2) = · · · = Pr(+|x ∈ rN ). Assume for this
proof sketch that the data generating process selects training examples uniformly at
random from the regions and then they are labeled correctly by labelers with the
exception of one example t . Without loss of generality, assume + is the majority class
in the region (the alternate case is symmetric) and therefore since the classifier is better
than random guessing, in expectation P̂r(+|x ∈ ri ) > 0.5 for each ri .

Now, consider training data T in which one example t in r1 is mislabeled, and the
rest are not. There are two cases, depending on whether or not t ∈ +.

Case (i): If the true label of t is positive, in expectation the value of |Pr(+|x ∈ r1)

−0.5| decreases; the training data from the region have a smaller proportion of

123



P. G. Ipeirotis et al.

positive examples, but in expectation still more than half.8 Therefore, SMU (xi ∈
r1) > SMU (x j ∈ rk �=1).
Case (ii): If the true label of t is negative, in expectation the value of
|Pr(+|x ∈ r1) − 0.5| increases. In this case, SMU (xi ∈ r1) < SMU (x j ∈ rk �=1).

However, since the majority class is positive, in expectation, case (i) will occur more
frequently than case (ii). Therefore, it is more likely than not that SMU (xi ∈ r1) >

SMU (x j ∈ rk �=1). Therefore, the mislabeled example will be likely to be relabeled by
MU before any x ′ ∈ rk �=1. 
�

In our experiments, model H is a random forest (Breiman 2001) of ten models
(generated by Weka, averaging the class membership probabilities). Notice that our
MU is quite different from the ensemble methods used in Verbaeten and Assche
(2003). In their paper, the binary choice of whether or not to eliminate an example is
based specifically on a consensus (or majority vote) filter built from a committee of
classifiers. However, our MU method works for any class-probability estimator which
can give uncertainty scores. We use a random forest here simply because that it would
in general give us reasonably good probability estimates.

We compare MU to other strategies below, but first let us address its obvious draw-
back. By ignoring the label set, MU has the complementary problem to LU: even if
the model is uncertain about a case, should we acquire more labels if the existing
label multiset is very certain about the example’s class? The investment in these labels
would be wasted, since they would have a small effect on either the integrated labels
or the learning.

A hybrid strategy, called Label and Model Uncertainty (LMU), combines the uncer-
tainty scores from LU and MU, to avoid examples where either model is certain. This
is done by computing the score SL MU as the geometric average9 of SLU and SMU .
That is:

SL MU = √
SMU · SLU (11)

Similarly, we combined the score of NLU with the score of MU, to create the New
Label and Model Uncertainty (NLMU) method, for which:

SN L MU = √
SMU · SN LU (12)

Figure 10 demonstrates the improvement in data quality when using model infor-
mation, which is typical of the results across our data sets. We can observe that the
LMU model strongly dominates all other strategies. In high-noise settings (p = 0.6)

MU also performs well compared to GRR and LU, indicating that when noise is high,

8 Since the Proposition and proof sketch are mainly to give theoretical motivation to MU, let’s assume that
the induction algorithm is no worse than a standard classification tree learner.
9 Subsequent to these experiments, we also experimented with other approaches for combining probabilities
from multiple sources, following the discussion in Clemen and Winkler (1990). For our experiments, taking
the geometric mean was the best performing and most robust approach for combining the uncertainty scores,
even after transforming the uncertainty scores into proper probability estimates.
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using learned models helps to focus the investment in improving quality. In settings
with low noise (p = 0.8), LMU continues to dominate, but MU no longer outperforms
LU and GRR.

6.4.1 Why model uncertainty MU works

Following the discussion above, we expect that incorrectly labeled examples will tend
to have higher MU uncertainty scores, compared to correctly labeled ones. Figure 14
shows a representative result: We computed the uncertainty scores of correctly and
incorrectly labeled examples for the bmg dataset (m = 10, p = 0.6). Figure 14
illustrates that the uncertainty scores of the correctly labeled examples are centered
around 0, while the distribution of scores for incorrectly labeled examples has a much
higher mean.

To assess the relative contribution of this self-healing property of MU, we compare
our MU with versions corresponding to traditional active learning. Specifically, the
latter uses 10-fold cross-validation; every fold is treated as active learning’s unlabeled
set, and the remaining 9 as the labeled set (training set) for building models. [We refer
to this strategy as MUCV ; it is essentially the same as the strategy of Brodley and
Friedl (1999).] MUCV follows a similar procedure as MU. However, unlike MUCV
that builds a random forest using the training data, our MU strategy builds a random
forest from the whole data without separating the data into training and testing sets.
This comparison isolates the contribution of applying the model back to the training
data (for self-healing), as opposed to active learning’s attempt to concentrate on parts of
the space near the classification boundary, or that otherwise are not (yet) modeled well.
As a point of further comparison, we also build a strategy called Model Uncertainty
with Oracle (MUO): we use all the original data with perfect labels (provided by a
perfect Oracle, but unknown to the re-labeling procedure except through the resultant
model) and build a random forest; we use this random forest to predict the uncertainty
of each example in the noisy data. For all strategies, the uncertainty score is defined
as in Eq. 10.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

 

 
Model Uncertainty distribution of incorrectly labeled examples
Model Uncertainty distribution of correctly labeled examples

Fig. 14 Why MU works: model uncertainty distribution of correctly and incorrectly labeled examples for
the bmg data set
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Fig. 15 The data quality
improvement on three versions
of model uncertainty (MU,
MUCV, and MUO) for the
mushroom data set
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Fig. 16 The model quality
improvement on three versions
of model uncertainty (MU,
MUCV, and MUO) for the
mushroom data set
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Figures 15 and 16 show representative experimental results for the three versions of
model uncertainty, using the mushroom data set. Figures 15 and 16, show that MUCV
and MUO are not nearly as effective as MU for repeated labeling. MU dynamically
finds examples that seem to be causing problems with the modeling, and improves their
label quality by acquiring more labels. In contrast, MUO ignores the characteristics of
the noisy data completely and applies the statistical models learned from the original
noise-free training data, so MUO always acquires more labels for the same small set
of examples—producing static models unaffected by the additional labels. MUCV
is also a dynamic process. However, the benefit of identifying examples that cannot
be classified easily (as with active learning) is not nearly as large as the benefit of
self-healing with MU.

6.5 Classification performance with selective repeated-labeling

So, finally, let us assess whether selective repeated-labeling accelerates learning (i.e.,
improves model generalization performance, in addition to data quality). Again, exper-
iments are conducted as described above, except here we compute generalization
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Fig. 17 Accuracy as a function of the number of labels acquired for the six selective repeated-labeling
strategies for the eight data sets (p = 0.6)

accuracy averaged over the held-out test sets (as described in Sect. 4.1). In Fig. 17, we
show the performances of these four strategies in terms of classification accuracy on
the eight data sets.
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Table 2 Average AUC of the six strategies over eight data sets, for p = 0.6

Data Set GRR LU NLU MU LMU NLMU

kr-vs-kp 0.891 0.908 0.902 0.925 0.941 0.942

Mushroom 0.956 0.964 0.966 0.980 0.980 0.980

Sick 0.637 0.674 0.685 0.717 0.764 0.761

Spambase 0.786 0.789 0.796 0.825 0.818 0.825

Splice 0.747 0.776 0.766 0.790 0.800 0.797

Thyroid 0.844 0.889 0.875 0.938 0.926 0.924

Tic-tac-toe 0.625 0.627 0.637 0.611 0.637 0.644

Waveform 0.672 0.689 0.686 0.689 0.716 0.723

Average 0.770 0.789 0.789 0.809 0.823 0.825

For each data set, the best performance is in boldface and the worst in italics

We report values for p = 0.6, a high-noise setting that can occur in real-life training
data.10 Table 2 summarizes the results of the experiments, reporting accuracies (AUCs)
averaged across the acquisition iterations for each data set, with the maximum AUC
across all the strategies highlighted in bold, the minimum AUC italicized, and the
grand averages reported at the bottom of the columns.

Here are the main findings from the results. The two basic methods that use LU (LU
and NLU) are consistently better than round-robin repeated-labeling, achieving higher
accuracy for every data set. (Recall that in the previous section, round-robin repeated-
labeling was shown to be substantially better than the baseline single labeling in this
setting.) The performance of model uncertainty alone (MU) is more variable: in one
case it has the best accuracy, but in another case it does not even reach the accuracy
of round-robin repeated-labeling. Overall, combining label and model uncertainty
(LMU and NLMU) produce the best approaches: in these experiments, they always
outperform round-robin repeated-labeling, and as hypothesized, generally they are
better than the strategies based on only one type of uncertainty (in the case of LU
and NLU, the corresponding combined strategy is better in every case; statistically
significant by a sign test at p < 0.01).

6.6 Alternative selective strategies

In previous sections, we have studied the performance of the selective repeated labeling
strategies. The experimental results show that all selective strategies perform better
than single labeling. In this section, we examine some alternative strategies, that can
be used in conjunction with the techniques that we presented so far. Specifically, we
discuss the case of using “soft labels” and the case of using weighted sampling to select

10 From Provost and Danyluk (1995): “No two experts, of the five experts surveyed, agreed upon diagnoses
more than 65% of the time. This might be evidence for the differences that exist between sites, as the experts
surveyed had gained their expertise at different locations. If not, however, it raises questions about the
correctness of the expert data.”
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the example to label, instead of picking the examples in absolute order according to
their uncertainty scores.

6.6.1 Soft-labeling

Majority voting is the most straightforward method for integrating multiple labels for
each example. In contrast to majority voting, soft-labeling (refer to Sect. 3.3) retains
the uncertainty in the multiset of labels. Specifically, the ME technique produces a
fractionally weighted example for each unique label in the set. In Sect. 5.3, we saw that
soft-labeling can improve the performance of the GRR strategy. Now, we investigate
whether soft-labeling can improve selective re-labeling.

Curiously, in our experimental results, we did not observe consistent improve-
ments in generalization performance by incorporating soft-labeling, as compared to
the majority-voting counterparts. The results from the data sets mushroom, splice,
and thyroid are representative and shown in Figs. 18, 19 and 20. For some data sets
(e.g., mushroom), the performance of soft-labeling and majority voting are similar.
For other data sets (e.g., splice), soft-labeling performs a little better, while on others
(e.g., thyroid), soft-labeling reduces performance significantly.

Based on these results and those from above, we can conclude that soft-labeling is a
strategy to consider in environments with high noise and when using basic round-robin
labeling strategies. When selective labeling is employed, the benefits of using soft-
labeling apparently diminish, and so far we do not have the evidence to recommend
using soft-labeling.
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Fig. 18 The accuracy improvement of soft-labeling on LU on the mushroom, splice, thyroid data sets
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Fig. 19 The accuracy improvement of soft-labeling on MU on the mushroom, splice, thyroid data sets
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Fig. 20 The accuracy improvement of soft-labeling on LMU on the mushroom, splice, thyroid data sets
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6.6.2 Weighted sampling

Weighted sampling has been shown previously to be a useful tool for improving the
performance of active learning (Saar-Tsechansky and Provost 2004). In this section,
we further study whether weighted sampling can also improve the performance of the
selective repeated-labeling strategies.

So far, all selective repeated-labeling strategies always acquired new labels for the
most uncertain examples, in absolute priority. Now we study the technique proposed
in (Saar-Tsechansky and Provost 2004) where an example is selected probabilistically,
with a probability proportional to its uncertainty: if the uncertainty score of an example
is si (where si is computed following SMU , SLU , SL MU , SN LU , SN L MU ), then the
probability of picking that example for labeling is si∑

j s j
. Figure 21 shows the label-

ing quality of the selective repeated-labeling strategies with and without weighted
sampling for the mushroom data set. Figure 22 shows the change of the accuracy of
the selective repeated-labeling strategies with and without weighted sampling for the
mushroom data set. (We only show the experimental results of the mushroom data set,
but the results are representative across all data sets.)

We can see that (this version of) weighted sampling does not improve the perfor-
mance (labeling quality and accuracy) of the selective repeated-labeling strategies. The
three selective repeated-labeling strategies with deterministic selection order perform
significantly better than the ones with weighted sampling. The weighted sampling
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Fig. 21 The labeling quality of the three selective repeated-labeling strategies with/without weighted
sampling for the mushroom data set
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Fig. 22 Accuracy of the three selective repeated-labeling strategies with/without weighted sampling for
the mushroom data set

makes the three repeated-labeling strategies worse. Intuitively, this happens because
weighted sampling allocates resources to examples that are only marginally uncertain.
Due to the large number of examples with low uncertainty, the weighted sampling
strategies end up allocating significant amount of labeling resources to re-label exam-
ples that are perfectly good and do not need any further labels. Note that the present
setting is quite different from that of active learning: here we have direct, albeit noisy,
information on the class of the example. Of course, there are alternative ways to use
the uncertainty scores to form a sampling distribution. It may be that a version that has
a sharper peak at the uncertain end of the spectrum would be effective; such tinkering
is left to future work.

7 Evaluation on real-world data

So far, we have presented experiments on real, benchmark data sets but with simulated
labelers; the main reason was the need to examine the performance of our algorithms
under a variety of settings. In this section, we present an additional experimental
evaluation using both real data and real labelers, who may also exhibit characteristics
that are not explicitly accounted for in our algorithms (e.g., different levels of noise,
correlated errors, some examples that are inherently harder than others, etc.).

To get a better understanding of how our repeated-labeling strategies perform in
practical settings, we use a real-world data set labeled by Amazon Mechanical Turk
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Table 3 MTurk-spam data set: The number of attributes, examples, and the split into positive and negative
examples

Data set #Examples Pos Neg

MTurk-spam 4,111 1,600 2,511

Fig. 23 Histogram of individual labeling quality and example difficulty for the “MTurk-spam” data set

workers. This data set includes a total of 4,111 descriptions of tasks posted on the
Amazon Mechanical Turk marketplace. (In other words, the workers on Mechanical
Turk, as part of our experiment, had to examine other tasks that were posted on the
market.) We asked the workers to examine whether task is asking workers to perform
an action that is designed to game social media metrics (e.g., “follow me on Twitter,”
“like my video on YouTube,” etc.). We collected a total of 32,752 labels. Table 3
summarizes characteristics of the data set.

We ran the experiment using CrowdFlower:11 CrowdFlower is a commercial system
that helps requesters to find trust-worthy workers. CrowdFlower achieves the goal by
checking the labels that workers assign to examples with labels already known to the
employer (often referred to as “gold tests”). By checking how often workers assign the
correct labels, CrowdFlower is able to eliminate workers with extremely low quality.
The disadvantage of the gold-based filtering is the need to generate sufficient amounts
of gold data for the filtering: with only a small number of gold tests, the tests tend to
repeat and spammers can estimate which examples serve the role of gold tests. The
labeler quality in the CrowdFlower-filtered data set is high, with an average labeler
quality being p ≈ 0.85. Figure 23 shows the distributions of labeler quality and
example difficulty. Individual labeler quality is measured as the fraction of examples
that are correctly classified by a particular labeler (where correctness is defined by the
majority of high-quality CrowdFlower workers), and example difficulty is measured
as the fraction of correct labels for a particular example.

While on CrowdFlower we can get high worker quality (by eliminating workers
that fail gold tests), in many crowdsourcing environments, including Mechanical Turk,

11 http://crowdflower.com
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Fig. 24 The labeling quality and accuracy as a function of the number of labels acquired for the six selective
repeated-labeling strategies for the “MTurk-spam” data set

we often have a very significant amount of noise. To experiment with various levels of
noise, we used our data set and randomly add a fraction of noisy labels to the data set,
and also add “spammer” workers that contribute only noise. In particular, whenever
we need a new label for an example, we do the following (suppose the noise level is α):

1. Draw a random number between 0 and 1: If the number is larger than α, go to step
2; otherwise, go to step 3.

2. Randomly draw with replacement, a label among the ones assigned to the objects
by the workers.

3. Artificially add a label to the example with an accuracy of 0.5 (to simulate the
existence of spammers).

Figure 24 shows the labeling quality and accuracy for the six repeated-labeling
strategies, with the use of linear SVMs as the learning algorithm and with noise level
α = 0.5. In this setting, half of the workers contributing just noise, while the other half
have an average quality of p ≈ 0.85, as described above; this results in a setting with
highly heterogeneous worker qualities. Our selective repeated-labeling strategies LMU
and NLMU outperform GRR for both the integrated labeling quality and the overall
classification accuracy. The results are qualitatively similar for different levels of α as
well. The behavior of our algorithms on our real data is very similar to the behavior of
our algorithms on the benchmark data sets with simulated labelers, which adds some
evidence to the superiority of the proposed selective repeated-labeling strategies. It is
encouraging to see the selective and repeated labeling algorithms working better than
existing baselines, even when the assumptions of independence and of equal difficulty
of the examples do not hold. Future work could elaborate further.

8 Conclusions, limitations, and future work

Repeated-labeling is a tool that should be considered whenever labeling might be
noisy, but can be repeated. We showed that under a wide range of conditions, it can
improve both the quality of the labeled data directly, and the quality of the models
learned from the data. In particular, selective repeated-labeling seems to be preferable,
taking into account both labeling uncertainty and model uncertainty.
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Our focus in this paper has been on improving data quality for supervised learning;
however, the results have implications for data mining generally. We showed that
selective repeated-labeling improves the data quality directly and substantially. This
could be helpful for many data mining applications.

This paper makes important assumptions that should be visited in future work, in
order for us to understand practical repeated-labeling and realize its full benefits.

– The techniques we present can be applied no matter if the labelers have the same or
different qualities. Furthermore, the NLU and NLMU selective labeling algorithm
explicitly account for the quality of the labelers being different across different
data points. We have not experimented extensively with the effects of labelers
of varying qualities. Moreover, good estimates of individual labelers’ qualities
inferred by observing the assigned labels (Dawid and Skene 1979; Ipeirotis et al.
2010; Smyth 1996; Smyth et al. 1994b) could allow more sophisticated selective
repeated-labeling strategies.

– The methods and experiments in this paper consider binary classification only.
However, many classification problems have multiple classes. Model uncertainty
applies directly to the multiclass setting as well. LU can be extended directly to the
multiclass setting by replacing the Beta distribution with the Dirichlet distribution
(the multivariate generalization of the Beta distribution).

– It would be interesting to see if labelers exhibit higher quality in exchange for a
higher payment. Some recent work (Mason and Watts 2009) indicates that this
may not be the case. It would be interesting to observe empirically how individual
labeler quality varies as we vary CU and CL , and to build models that dynam-
ically increase or decrease the amounts paid to the labelers, depending on the
quality requirements of the task. Morrison and Cohen (2005) determine the opti-
mal amount to pay for noisy information in a decision-making context, where the
amount paid affects the level of noise.

– We also assumed that CL and CU are fixed and indivisible. Clearly there are
domains where CL and CU would differ for different examples, and could even be
broken down into different acquisition costs for different features. Thus, repeated-
labeling may have to be considered in tandem with costly feature-value acquisition.
Indeed, feature-value acquisition may be noisy as well, so one could envision
a generalized repeated-labeling problem that includes both costly, noisy feature
acquisition and label acquisition.

– In this paper, we consider the labeling process to be a noisy process over a single,
true label. An alternative, practically relevant setting is where the label assign-
ment to a case is inherently uncertain. (For example, assesments on whether a
racy celebrity gossip website should be classified into an “adult-only” category or
into “parental-guidance”). This is a separate setting where repeated-labeling could
provide benefits, but we leave it for future analysis.

– In our repeated-labeling strategy we compared repeated-labeling vs. single label-
ing, and did not consider any hybrid scheme that can combine the two strategies.
A promising direction for future research is to build a “learning curve gradient”-
based approach that decides dynamically which action will give the highest mar-
ginal accuracy benefit for the cost. Such an algorithm would compare on-the-fly the
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expected benefit of acquiring new examples versus selectively repeated-labeling
existing, noisy examples and/or features.

Despite these limitations, we hope that this study provides a solid foundation on
which future work can build. Furthermore, we believe that both the analyses and the
techniques introduced can have immediate, beneficial practical application.
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