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Abstract
Classifying and Searching Hidden-Web Text Databases

Panagiotis G. Ipeirotis

The World-Wide Web continues to grow rapidly, which makes exploiting all
available information a challenge. Search engines such as Google index an
unprecedented amount of information, but still do not provide access to valu-
able content in text databases “hidden” behind search interfaces. For example,
current search engines largely ignore the contents of the Library of Congress,
the US Patent and Trademark database, newspaper archives, and many other
valuable sources of information because their contents are not “crawlable.”
However, users should be able to find the information that they need with
as little effort as possible, regardless of whether this information is crawlable
or not. As a significant step towards this goal, we have designed algorithms
that support browsing and searching —the two dominant ways of finding
information on the web— over “hidden-web” text databases.

To support browsing, we have developed QProber, a system that automatically
categorizes hidden-web text databases in a classification scheme, according to
their topical focus. QProber categorizes databases without retrieving any docu-
ment. Instead, QProber uses just the number of matches generated from a
small number of topically focused query probes. The query probes are au-
tomatically generated using state-of-the-art supervised machine learning tech-
niques and are typically short. QProber’s classification approach is sometimes
orders of magnitude faster than approaches that require document retrieval.

To support searching, we have developed crucial building blocks for construct-
ing sophisticated metasearchers, which search over many text databases at
once through a unified query interface. For scalability and effectiveness, it
is crucial for a metasearcher to have a good database selection component and
send queries only to databases with relevant content. Usually, database se-
lection algorithms rely on statistics that characterize the contents of each da-
tabase. Unfortunately, many hidden-web text databases are completely au-
tonomous and do not report any summaries of their contents. To build con-
tent summaries for such databases, we extract a small, topically focused doc-
ument sample from each database during categorization and use it to build
the respective content summaries. A potential problem with content sum-
maries derived from document samples is that any reasonably small sample
will suffer from data sparseness and will not contain many words that appear
in the database. To enhance the sparse samples and improve the database
selection decisions, we exploit the fact that topically similar databases tend to
have similar vocabularies, so samples extracted from databases with similar
topical focus can complement each other. We have developed two database se-
lection algorithms that exploit this observation. The first algorithm proceeds
hierarchically and selects first the best category for a query and then sends the
query to the appropriate databases in the chosen category. The second data-



base selection algorithm uses “shrinkage,” a statistical technique for improv-
ing parameter estimation in the face of sparse data, to enhance the database
content summaries with category-specific words. The shrinkage-enhanced
summaries characterize the database contents better than their “unshrunk”
counterparts do, and in turn help produce significantly more relevant data-
base selection decisions and overall search results.

Content summaries of static databases do not need to change over time. How-
ever, databases are rarely static and the statistical summaries that describe
their contents need to be updated periodically to reflect content changes.
To understand how real-world databases change over time and how these
changes propagate to the database content summaries, we studied how the
content summaries of 152 real web databases changed every week, for a pe-
riod of 52 weeks. Then, we used “survival analysis” techniques to examine
which parameters can help predict when the content summaries need to be
updated. Based on the results of this study, we designed algorithms that
analyze various characteristics of the databases and their update history to
predict when the content summaries need to be modified, thus avoiding over-
loading the databases unnecessarily.

In summary, this thesis presents building blocks that are critical to enable
access to the often valuable contents of hidden-web text databases, hopefully
approaching the goal of making access to these databases as easy and efficient
as over regular web pages.



Contents

1 Introduction 1

2 Classifying Hidden-Web Text Databases 5
2.1 Classification of Text Databases . . . . . . . . . . . . . . . . . . . 7

2.1.1 Hierarchical Classification Schemes . . . . . . . . . . . . 7
2.1.2 The Text Database Classification Task . . . . . . . . . . . 8

2.2 Classifying Databases through Probing . . . . . . . . . . . . . . 11
2.2.1 Training a Document Classifier . . . . . . . . . . . . . . . 11
2.2.2 Defining Query Probes from a Rule-Based Document

Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Extracting Query Probes from Numerically Parameter-

ized Document Classifiers . . . . . . . . . . . . . . . . . . 15
2.2.4 Adjusting Probing Results . . . . . . . . . . . . . . . . . . 18
2.2.5 Using Probing Results for Classification . . . . . . . . . . 20

2.3 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Techniques for Comparison . . . . . . . . . . . . . . . . . 24

2.3.2.1 QProber Variations . . . . . . . . . . . . . . . . 24
2.3.2.2 Document Sampling (DS) . . . . . . . . . . . . 24
2.3.2.3 Title-based Querying (TQ) . . . . . . . . . . . . 25

2.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Tuning QProber and DS . . . . . . . . . . . . . . . . . . . 28
2.4.2 Results over the Controlled Databases . . . . . . . . . . . 30
2.4.3 Results over the Web Databases . . . . . . . . . . . . . . 39

2.5 Beyond Hidden-Web Text Databases . . . . . . . . . . . . . . . . 43
2.6 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Constructing Database Content Summaries 49
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Database Selection Algorithms . . . . . . . . . . . . . . . 51
3.1.2 Uniform Probing for Content Summary Construction . 52

3.2 Focused Probing for Content Summary Construction . . . . . . 54
3.3 Estimating Absolute Document Frequencies . . . . . . . . . . . 57
3.4 Improving Content Summaries using Shrinkage . . . . . . . . . 60

3.4.1 Overview of our Approach . . . . . . . . . . . . . . . . . 60

i



3.4.2 Using Shrinkage over a Topic Hierarchy . . . . . . . . . 62
3.5 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.2 Techniques for Comparison . . . . . . . . . . . . . . . . . 68

3.5.2.1 Sampling Algorithms . . . . . . . . . . . . . . . 68
3.5.2.2 Shrinkage and Frequency Estimation . . . . . . 69

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.1 Effect of Sampling Algorithm . . . . . . . . . . . . . . . . 70
3.6.2 Effect of Shrinkage . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2.1 Relationship between Content Summaries and
Categories . . . . . . . . . . . . . . . . . . . . . 79

3.6.2.2 Properties of Shrinkage-based Content Summaries 80
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Classification-Aware Database Selection 85
4.1 Exploiting Topic Hierarchies for Database Selection . . . . . . . 86
4.2 Improving Database Selection using Shrinkage . . . . . . . . . . 90
4.3 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Techniques for Comparison . . . . . . . . . . . . . . . . . 92

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Updating Database Content Summaries 123
5.1 Studying Content Changes of Real Text Databases . . . . . . . . 124

5.1.1 Data for our Study . . . . . . . . . . . . . . . . . . . . . . 124
5.1.2 Measuring Content Summary Change . . . . . . . . . . . 125

5.2 Predicting Content Summary Change Frequency . . . . . . . . 135
5.2.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.2 Cox Proportional Hazards Regression Model . . . . . . 136
5.2.3 Using Cox Regression to Model Content Summary Changes137

5.3 Scheduling Updates . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.1 Deriving an Update Policy . . . . . . . . . . . . . . . . . 143
5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . 145

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Related Work 149
6.1 Document and Database Classification . . . . . . . . . . . . . . . 149
6.2 Database Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Constructing Database Content Summaries . . . . . . . . . . . . 152
6.4 Evolution of Text Databases . . . . . . . . . . . . . . . . . . . . . 153
6.5 Miscellaneous Applications of Query Probing . . . . . . . . . . 155

7 Conclusions and Future Work 157

ii



List of Figures

2.1 Portion of the InvisibleWeb classification scheme. . . . . . . . . 7
2.2 Sending probes to the ACM Digital Library database with queries

derived from a document classifier. . . . . . . . . . . . . . . . . 15
2.3 Generating rules from a set of weights wi and a threshold b. . . 17
2.4 Algorithm for classifying a database D into the category sub-

tree rooted at category C. . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Classifying the ACM Digital Library database. . . . . . . . . . . 21
2.6 The average F1-measure of the different techniques for varying

specificity threshold τes (τec = 8). . . . . . . . . . . . . . . . . . . 33
2.7 The average F1-measure of the different techniques for varying

coverage threshold τec (τes = 0.4). . . . . . . . . . . . . . . . . . . 34
2.8 The average F1-measure for hierarchies of different depths (τs =

τes = 0.4, τc = τec = 8). . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 The average number of “interactions” with the databases as a

function of threshold τes (τec = 8). . . . . . . . . . . . . . . . . . 36
2.10 The average number of “interactions” with the databases as a

function of threshold τec (τes = 0.4). . . . . . . . . . . . . . . . . 37
2.11 The average F1-measure for QP-RIPPER and QP-SVM with and

without overlap elimination, as a function of threshold τes (τec =
8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 The average F1-measure for the classification techniques over
databases with boolean and vector-space interfaces, and for
varying τes (τec = 8). . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Average number of query probes for the Web databases as a
function of τes and τec. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Generalizing the classification algorithm from Figure 2.4 to gen-
erate a content summary for a database using focused query
probing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Querying the CNN Sports Illustrated database with focused probes. 56
3.3 Estimating unknown df values. . . . . . . . . . . . . . . . . . . . 57
3.4 A fraction of a classification hierarchy and content summary

statistics for word “hypertension.” . . . . . . . . . . . . . . . . . 62
3.5 Using expectation maximization to determine the λi mixture

weights for the shrunk content summary of a database D. . . . 66
3.6a Weighted recall as a function of the specificity threshold τes and

for the Controlled data set. . . . . . . . . . . . . . . . . . . . . . . 71

iii



3.6b Unweighted recall as a function of the specificity threshold τes
and for the Controlled data set. . . . . . . . . . . . . . . . . . . . 71

3.6c Spearman Rank Correlation Coefficient as a function of the speci-
ficity threshold τes and for the Controlled data set. . . . . . . . . 72

3.6d Relative error of the d f estimations, for words with d f > 3, as
a function of the specificity threshold τes and for the Controlled
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6e Number of interactions per database, as a function of the speci-
ficity threshold τes and for the Controlled data set. . . . . . . . . 73

3.7a Weighted recall as a function of the specificity threshold τes, for
the Controlled data set and for the case where the FP and QBS
methods retrieve the same number of documents. . . . . . . . . 74

3.7b Unweighted recall as a function of the specificity threshold τes,
for the Controlled data set and for the case where the FP and
QBS methods retrieve the same number of documents. . . . . . 74

3.7c Spearman Rank Correlation Coefficient as a function of the speci-
ficity threshold τes, for the Controlled data set and for the case
where the FP and QBS methods retrieve the same number of
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7d Number of interactions per database as a function of the speci-
ficity threshold τes, for the Controlled data set and for the case
where the FP and QBS methods retrieve the same number of
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8a Weighted recall for pairs of database content summaries, for the
Controlled data set as a function of the number of common cat-
egories in the database pairs. . . . . . . . . . . . . . . . . . . . . 78

3.8b Spearman Rank Correlation Coefficient for pairs of database con-
tent summaries, for the Controlled data set as a function of the
number of common categories in the database pairs. . . . . . . 78

4.1 Associating content summaries with categories. . . . . . . . . . 87
4.2 Selecting the K most specific databases for a query hierarchically. 88
4.3 Exploiting a topic hierarchy for database selection. . . . . . . . 89
4.4 Using shrinkage adaptively for database selection. . . . . . . . . 90
4.5 The Rk ratio for CORI with stemming over the TREC4 data set. 94
4.6 The Rk ratio for CORI without stemming over the TREC4 data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 The Rk ratio for CORI with stemming over the TREC6 data set. 96
4.8 The Rk ratio for CORI without stemming over the TREC6 data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.9 The Rk ratio for bGlOSS with stemming over the TREC4 data set. 98
4.10 The Rk ratio for bGlOSS without stemming over the TREC4

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.11 The Rk ratio for bGlOSS with stemming over the TREC6 data set.100
4.12 The Rk ratio for bGlOSS without stemming over the TREC6

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.13 The Rk ratio for LM with stemming over the TREC4 data set. . 102
4.14 The Rk ratio for LM without stemming over the TREC4 data set. 103

iv



4.15 The Rk ratio for LM with stemming over the TREC6 data set. . 104
4.16 The Rk ratio for LM without stemming over the TREC6 data set. 105
4.17 The Rk ratio for CORI with stemming over the TREC4 data set,

with and without universal application of shrinkage. . . . . . . 109
4.18 The Rk ratio for CORI without stemming over the TREC4 data

set, with and without universal application of shrinkage. . . . . 110
4.19 The Rk ratio for bGlOSS with stemming over the TREC4 data

set, with and without universal application of shrinkage. . . . . 111
4.20 The Rk ratio for bGlOSS without stemming over the TREC4

data set, with and without universal application of shrinkage. . 112
4.21 The Rk ratio for CORI with stemming over the TREC4 data set,

for summaries generated with (“-FreqEst” suffix) and without
(“-NoFreqEst” suffix) the use of frequency estimation. . . . . . 114

4.22 The Rk ratio for CORI without stemming over the TREC4 data
set, for summaries generated with (“-FreqEst” suffix) and with-
out (“-NoFreqEst” suffix) the use of frequency estimation. . . . 115

4.23 The Rk ratio for CORI with stemming over the TREC6 data set,
for summaries generated with (“-FreqEst” suffix) and without
(“-NoFreqEst” suffix) the use of frequency estimation. . . . . . 116

4.24 The Rk ratio for CORI without stemming over the TREC6 data
set, for summaries generated with (“-FreqEst” suffix) and with-
out (“-NoFreqEst” suffix) the use of frequency estimation. . . . 117

5.1 The recall of content summary O(D, t) with respect to the “cur-
rent” content summary C(D), as a function of time t and aver-
aged over each database D in the dataset. . . . . . . . . . . . . . 126

5.2 The weighted recall of “old” QBS-based content summaries
with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 127

5.3 The weighted recall of “old” FPS-based content summaries with
respect to the “current” ones, as a function of the time T be-
tween updates and averaged over each database D in the dataset,
for different scheduling policies (τ = 0.5). . . . . . . . . . . . . . 127

5.4 The unweighted recall of “old” QBS-based content summaries
with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 128

5.5 The unweighted recall of “old” FPS-based content summaries
with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 128

5.6 The precision of content summary O(D, t) with respect to the
“current” content summary C(D), as a function of time t and
averaged over each database D in the dataset. . . . . . . . . . . 130

v



5.7 The weighted precision of “old” QBS-based content summaries
with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 131

5.8 The weighted precision of “old” FPS-based content summaries
with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 131

5.9 The unweighted precision of “old” QBS-based content sum-
maries with respect to the “current” ones, as a function of the
time T between updates and averaged over each database D in
the dataset, for different scheduling policies (τ = 0.5). . . . . . 132

5.10 The unweighted precision of “old” FPS-based content summaries
with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the
dataset, for different scheduling policies (τ = 0.5). . . . . . . . . 132

5.11 The KL divergence of content summary O(D, t) with respect to
the “current” content summary C(D), as a function of time t
and averaged over each database D in the dataset. . . . . . . . . 133

5.12 The KL divergence of “old” QBS-based content summaries with
respect to the “current” ones, as a function of the time T be-
tween updates and averaged over each database D in the dataset,
for different scheduling policies (τ = 0.5). . . . . . . . . . . . . . 134

5.13 The KL divergence of “old” FPS-based content summaries with
respect to the “current” ones, as a function of the time T be-
tween updates and averaged over each database D in the dataset,
for different scheduling policies (τ = 0.5). . . . . . . . . . . . . . 134

5.14 The survival function S(t) for different domains (|D| = 1, 000,
τ = 0.5, κ1 = 0.1, QBS sampling). . . . . . . . . . . . . . . . . . . 143

5.15 The precision of the updates performed by the different schedul-
ing algorithms, as a function of the average time between up-
dates T and for τ = 0.5, where the κ1 feature is computed using
QBS-based summaries. . . . . . . . . . . . . . . . . . . . . . . . . 146

5.16 The precision of the updates performed by the different schedul-
ing algorithms, as a function of the average time between up-
dates T and τ = 0.5, where the κ1 feature is computed using
FPS-based summaries. . . . . . . . . . . . . . . . . . . . . . . . . 147

vi



List of Tables

2.1 Real web databases in the Web set. . . . . . . . . . . . . . . . . . 23
2.2 The F1-measure for QP-Bayes, with and without feature selec-

tion (FS), and with and without confusion-matrix adjustment
(CMA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The F1-measure for QP-C4.5, with and without confusion-matrix
adjustment (CMA). . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 The F1-measure for QP-SVM, with and without feature selec-
tion (FS), and with and without confusion-matrix adjustment
(CMA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 The F1-measure for QP-RIPPER, with and without feature selec-
tion (FS), and with and without confusion-matrix adjustment
(CMA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Results of three-fold cross-validation over the Web databases. . 40
2.7 The performance of crawling- and query-based classification

for five databases (τes = 0.4, τec = 8). . . . . . . . . . . . . . . . . 44
2.8 The crawling-based classification and associated precision (P)

and recall (R) for five databases after crawling different frac-
tions of each database (τes = 0.4, τec = 8). . . . . . . . . . . . . . 45

3.1 A fragment of the content summaries of two databases. . . . . 51
3.2 The category mixture weights for two databases. . . . . . . . . . 65
3.3 Some of the real web databases in the Web data set. . . . . . . . 67
3.4 Weighted recall, Spearman Rank Correlation Coefficient, and num-

ber of interactions per database, for the Web, TREC4, and TREC6
data sets and for the case where FP-SVM and QBS-SVM re-
trieve the same number of documents. . . . . . . . . . . . . . . . 77

3.5a Weighted recall for pairs of database content summaries, as a
function of the number of common categories in the database
pairs and for the Web, TREC4, and TREC6 data sets. . . . . . . . 79

3.5b Spearman Rank Correlation Coefficient for pairs of database con-
tent summaries, as a function of the number of common cate-
gories in the database pairs and for the Web, TREC4, and TREC6
data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6a Weighted recall wr. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6b Unweighted recall ur. . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7a Weighted precision wp. . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7b Unweighted precision up. . . . . . . . . . . . . . . . . . . . . . . 82
3.8 Spearman Correlation Coefficient SRCC. . . . . . . . . . . . . . 83

vii



3.9 KL-divergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Percentage of query-database pairs for which shrinkage was
applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Distribution of domains in our dataset. . . . . . . . . . . . . . . 125
5.2 The coefficients of the Cox model, when trained for various sets

of features and for different sampling methods for computing
the κ1 feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 The parameters for the baseline survival functions for the five
domains. The baseline survival functions describe the survival
time of a database D in each domain with size |D| = 1 (ln(|D|) =
0), with average distance between the sample summaries κ1 = 0
(computed using QBS or FPS) and for threshold τ = 0. . . . . . 141

5.4 Optimal content-summary update frequencies for two databases.144

viii



Acknowledgments

First and foremost, I would like to thank my advisor, Luis Gravano, for his
truly exceptional guidance and help. He helped me in many aspects of my aca-
demic and personal life and vindicated multiple times my decision to come
to Columbia for my PhD studies. I am indebted to him for everything.

Much of the work in this thesis is a result of collaboration. Mehran Sahami
gave me invaluable advice and helped me understand in depth many machine
learning algorithms. The work in Chapter 2 is joint work with him and Luis. I
have also benefited from my collaboration with Junghoo Cho and Alexandros
Ntoulas. The work in Chapter 5 is the result of the collaboration with Junghoo,
Alexandros, and Luis. Many thanks also go to Jamie Callan, who served on
my thesis committee, gave me great comments, and helped me improve the
clarity and precision of the final manuscript.

I also wish to thank all the past and present members of the Columbia Data-
base Group for countless discussions and useful feedback. In particular, Ken
Ross helped me improve my presentation skills and was a source of useful
criticism for my work. Eugene Agichtein, Nicolas Bruno, and Amélie Mar-
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Chapter 1

Introduction

The World-Wide Web continues to grow. Unprecedented amounts of infor-
mation are available on regular web pages and also in valuable text databases
whose contents are exposed via search interfaces. Web search engines such
as Google1 provide effective access to web pages but, unfortunately, text da-
tabases are sometimes more challenging to handle. Specifically, text data-
bases often have their contents “hidden” behind search interfaces and their
documents cannot be accessed directly through hyperlinks, which effectively
makes the database contents invisible to traditional search engines. We refer
to such databases as hidden-web text databases. Examples of hidden-web text
databases include the Library of Congress database, the US Patent and Trade-
mark database, the PubMed database, newspaper archives, and many other
valuable sources of information. The main purpose of this thesis is to devise
accurate and efficient techniques for classifying and searching hidden-web
text databases, thus providing critical building blocks to enable web users to
browse and search these databases as easily and efficiently as users access
regular web pages via web search engines.

To support browsing, it is desirable to organize text databases in a classifica-
tion scheme, so that users can navigate through categories to locate databases
of interest. In the past, there have been efforts to manually classify text da-
tabases into Yahoo!-like hierarchical categorization schemes. Unfortunately,
manual approaches do not scale well over the web, so we present an auto-
matic method to place databases in a classification scheme in an accurate and
efficient manner.

To support searching, we can build metasearchers, which provide a uniform
interface for querying multiple databases at once. A typical metasearcher
may provide access to hundreds or thousands of databases. However, only
a few of the available databases may contain relevant documents for a given
query. Therefore, for efficiency and accuracy it is important not to broadcast

1http://www.google.com

http://www.google.com
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the query to all available databases but rather query only databases with rel-
evant content. The database selection component of a metasearcher typically
relies on a statistical summary of the database contents, which should be com-
plete and reflect the actual, current contents of the databases. We present key
technologies both for generating accurate and up-to-date database summaries
and for improving existing database selection algorithms.

Specifically, the key contributions of this thesis are as follows:

• In Chapter 2, we present QProber, a classification algorithm for text data-
bases. QProber categorizes databases without retrieving any document. In-
stead, QProber uses just the number of matches generated from a small
number of topically focused query probes. For example, a database that
generates a large number of matches for queries like [cancer] and [heart
disease] but not for [algorithm] and [operating systems] is more likely
to be about “Health” than about “Computers.” The query probes are
automatically generated using state-of-the-art supervised machine learn-
ing techniques and are typically short. We present experimental results
showing that QProber produces highly accurate classification decisions,
sending only a small number of queries to each database.

• In Chapter 3, we build on the classification technique from Chapter 2
and present an algorithm to derive content summaries from hidden-web
text databases by using “focused query probes.” The probes adaptively
extract documents that are representative of the topic coverage of the
databases. We also present a technique for estimating the absolute doc-
ument frequency of the database words, which is important for database
selection. Unfortunately, Zipf’s law virtually guarantees that any con-
tent summary constructed from a reasonably small document sample
will suffer from data sparseness and will not contain many words that
appear in the database. To address this problem, we exploit the hierar-
chical categorization of the databases and adapt the notion of “shrink-
age” —a form of smoothing that has been used successfully for doc-
ument classification— to the content summary construction task. Our
evaluation suggests that the generated content summaries are signifi-
cantly more complete than their “unshrunk” counterparts.

• In Chapter 4, we present two database selection algorithms that exploit
database classification to improve the quality of search results in the
face of incomplete, sample-based content summaries. Both algorithms
are based on the observation that topically similar databases tend to
have related content summaries. First, we present a hierarchical selec-
tion algorithm that directs queries to the most promising categories and
then to the best databases in these categories. Then, we present a “flat”
selection strategy that exploits the database categorization implicitly, via
the shrinkage-based content summaries. Our algorithm adaptively de-
cides whether to use the shrinkage-based content summaries or their
unshrunk counterparts. Our experimental evaluation shows that, in
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the presence of incomplete content summaries, the proposed algorithms
outperform the state-of-the-art database selection techniques.

• In Chapter 5, we present a study on the evolution of web databases.
Content summaries of static databases do not change over time. How-
ever, databases are rarely static and the statistical summaries that de-
scribe their contents need to be updated periodically to reflect content
changes. To understand how real-world databases change over time
and how these changes propagate to the database content summaries,
we start by studying how the content summaries of 152 real web data-
bases changed every week, over one year. Then, we use “survival anal-
ysis” techniques to examine which parameters can help predict when
the content summaries need to be updated. Based on the conclusions of
this study, we develop algorithms that analyze various characteristics of
the databases and their update history to predict when the content sum-
maries need to be modified, thus avoiding overloading the databases
unnecessarily.

Finally, in Chapter 6 we discuss related work, while in Chapter 7 we present
conclusions and directions for future research.
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Chapter 2

Classifying Hidden-Web Text
Databases

The World-Wide Web continues to grow and unprecedented amounts of infor-
mation are available on regular web pages that search engines such as Google
crawl and index. In addition, the web also hosts valuable text databases whose
contents are exposed via search interfaces. The general problem of accurate
information access and retrieval on the web thus continues to escalate. A
particular aspect of this problem, on which we focus in this chapter, is the
categorization of text databases according to their topic.

The information stored in text databases is often of high quality, as the follow-
ing example illustrates:

Example 1 Consider the US Patent and Trademark (USPTO) database, which con-
tains the full text of all the patents awarded in the US since 19761. If we query
USPTO for patents with the keywords wireless AND network, USPTO returns
28,013 matches (as of May 27th, 2004), corresponding to distinct patents that con-
tain these keywords. The full text of the patents is stored locally at the USPTO site
and is not distributed over the web.

Unfortunately, text databases often have their contents “hidden” behind search
interfaces and their documents cannot be accessed directly through hyper-
links. We refer to such databases as hidden-web text databases. For our pur-
poses, a hidden-web text database is a collection of text documents that is
searchable through a web-accessible search interface. The documents in a
text database do not necessarily reside on a single centralized site, but can be
scattered over several sites. Traditional search engines cannot index such text
databases, since search engines rely on hyperlinks to reach the documents
that they index. Hence, search engines ignore the contents of hidden-web
databases, as the following real example shows:

1The query interface is available at http://patft.uspto.gov/netahtml/search-adv.htm.

http://patft.uspto.gov/netahtml/search-adv.htm
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Example 1 (cont.) Unfortunately, the high-quality contents of the USPTO data-
base are not crawlable by traditional search engines. A query2 on Google that finds
the pages in the USPTO database with the keywords “wireless” and “network” re-
turns 0 matches (as of May 27th, 2004), which illustrates that the valuable content
available through this database is ignored by traditional search engines.

Additionally, some web sites prevent crawling by restricting access via a
robots.txt file. Such sites then also become de-facto non-crawlable.

This chapter focuses on the classification of hidden-web text databases. In
order to effectively guide users to the appropriate databases, some web sites
(described in more detail below) have undertaken the arduous task of manu-
ally classifying these databases into a Yahoo!-like hierarchical categorization
scheme. While we believe this type of categorization to be immensely helpful
to web users trying to find information relevant to a given topic, it is ham-
pered by the lack of scalability inherent in manual classification. By providing
efficient and automatic means for the accurate classification of text databases
into topic hierarchies, we hope to alleviate the scalability problems of manual
database classification, and make it easier for end-users to find the relevant
information they are seeking on the web.

Consequently, in this chapter we describe our system, named QProber, which
automatically categorizes hidden-web text databases into topic hierarchies. QProber
uses a combination of machine learning and database querying techniques.
We use machine learning techniques to initially build document classifiers.
Rather than actually using these classifiers to categorize individual docu-
ments, we extract classification rules from the document classifiers, and we
transform these rules into a set of query probes that can be sent to the search
interface of the available text databases. Our algorithm then simply uses the
number of matches reported for each query to make classification decisions,
without having to retrieve and analyze any of the actual database documents. This
makes our approach very efficient and scalable.

The contributions presented in this chapter are organized as follows. In Sec-
tion 2.1, we more formally define and provide various strategies for text da-
tabase classification. In Section 2.2, we present the details of our query prob-
ing algorithm for database classification and describe an algorithm to extract
query probes from a variety of both rule-based and linear document classi-
fiers. In Sections 2.3 and 2.4, we provide the experimental setting and results,
respectively. We compare variations of QProber with existing methods for au-
tomatic database classification. QProber is shown to be both more accurate as
well as more efficient on the database classification task. Also, we examine
how different parameters affect the performance of QProber and report results
for different classifier types as well as for a variety of probing strategies and
document retrieval models. In Section 2.5, we show how QProber can be at-
tractive for classifying crawlable text databases as well, as an alternative to a
more expensive crawling-based classification strategy. Finally, in Section 2.6,

2The query is [wireless network site:patft.uspto.gov].
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Figure 2.1: Portion of the InvisibleWeb classification scheme.

we provide further discussion, and in Section 2.7 we conclude the chapter.
The bulk of this chapter has appeared in [IGS00, IGS01b, GIS02, GIS03].

2.1 Classification of Text Databases

In this section, we discuss how we can organize hidden-web text databases
in a hierarchical categorization scheme, which users can browse to find the
resources of interest. First, in Section 2.1.1, we define the hierarchical classi-
fication schemes that we will consider. Then, in Section 2.1.2, we define our
text database classification task over a categorization scheme of choice.

2.1.1 Hierarchical Classification Schemes

Web directories like Yahoo! organize web pages into categories for users to
browse. In this section, we extend this notion to hidden-web text databases.

Several commercial web directories have started to manually classify hidden-
web text databases, so that users can browse through these categories to find
the databases of interest. Examples of such directories include InvisibleWeb3

and SearchEngineGuide4. Figure 2.1 shows a small fraction of InvisibleWeb’s
classification scheme.

Formally, we can define a hierarchical classification scheme like the one used
by InvisibleWeb as follows:

Definition 1 A hierarchical classification scheme is a rooted directed tree whose
nodes correspond to (topic) categories and whose edges denote specialization. An edge
from category v to another category v′ indicates that v′ is a subcategory of v.

3http://www.invisibleweb.com
4http://www.searchengineguide.com/searchengines.html

http://www.invisibleweb.com
http://www.searchengineguide.com/searchengines.html
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Given a classification scheme, our goal is to automatically populate it with
text databases, where we assign each database to the “best” category or cat-
egories in the scheme. For example, InvisibleWeb has manually assigned
WNBA to the “Basketball” category in its classification scheme. In general we
can define what category or categories are “best” for a given database in sev-
eral different ways, according to the needs that the classification will serve.
We describe different such approaches next.

2.1.2 The Text Database Classification Task

We now turn to the central issue of how to automatically assign databases
to categories in a classification scheme, assuming complete knowledge of the
contents of these databases. Of course, in practice we will not have such com-
plete knowledge, so we will have to use the probing techniques of Section 2.2
to approximate the “ideal” classification definitions that we give next.

To assign a text database to a category or set of categories in a classification
scheme, one possibility is to manually inspect the contents of the database and
make a decision based on the results of this inspection. Incidentally, this is
the way in which commercial web directories like InvisibleWeb operate. This
approach might produce good quality category assignments but, of course, is
expensive (it includes human participation) and does not scale well to large
numbers of databases.

Alternatively, we could follow a less manual approach and determine the cate-
gory of a text database based on the category of the documents that it contains.
We can formalize this approach as follows. Consider a web database D and n
categories C1, . . . , Cn. If we knew the category of each of the documents inside
D, then we could use this information to classify database D in at least two
different ways. A coverage-based classification will assign D to all categories
for which D has sufficiently many documents. In contrast, a specificity-based
classification will assign D to the categories that cover a significant fraction of
D’s holdings.

Example 2 Consider topic category “Basketball.” CBS SportsLine has a large
number of articles about basketball and covers not only women’s basketball but other
basketball leagues as well. It also covers other sports like football, baseball, and hockey.
On the other hand, WNBA only has articles about women’s basketball. The way that
we will classify these sites depends on the use of our classification. Users who prefer to
see only articles relevant to basketball might prefer a specificity-based classification
and would like to have the site WNBA classified into node “Basketball.” However,
these users would not want to have CBS SportsLine in this node, since this site
has a large number of articles irrelevant to basketball. In contrast, other users might
prefer to have only databases with a broad and comprehensive coverage of basketball
in the “Basketball” node. Such users might prefer a coverage-based classification
and would like to find CBS SportsLine in the “Basketball” node, which has a large
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number of articles about basketball, but not WNBA with only a small fraction of the
total number of basketball documents.

More formally, we can use the number of documents in each category that
we find in database D to define the following two metrics, which we will use
to specify the “ideal” classification of D. Later, in Section 2.2.2, we show how
we can approximate these metrics.

Definition 2 Consider a database D, a hierarchical classification scheme C, and a
category Ci ∈ C. The coverage of a database D for Ci, Coverage(D, Ci), is the
number of documents in D in category Ci:

Coverage(D, Ci) = number of D documents in category Ci

Coverage(D, Ci) defines the “absolute” amount of information that database
D contains about category Ci.5

Definition 3 In the same setting as Definition 2, the specificity of a database D
for Ci, Specificity(D, Ci), is the fraction of documents in category Ci in D. More
formally, we have:

Specificity(D, Ci) =
Coverage(D, Ci)

|D|
where |D| is the number of documents in the database.

Specificity(D, Ci) gives a measure of how “focused” the database D is on a
category Ci. The value of Specificity ranges between 0 and 1. For notational
convenience, we define:

Coverage(D) = 〈Coverage(D, Ci1), . . . , Coverage(D, Cim)〉
Specificity(D) = 〈Specificity(D, Ci1), . . . , Specificity(D, Cim)〉

when the set of categories {Ci1 , . . . , Cim} is clear from the context.

Now, we can use the Specificity and Coverage values to decide how to classify
D into one or more categories in the classification scheme. As described
above, a specificity-based classification would classify a database into a category
when a significant fraction of the documents it contains are of this specific
category. Alternatively, a coverage-based classification would classify a database
into a category when the database has a substantial number of documents in

5It would be possible to normalize Coverage values to be between 0 and 1 by dividing by the
total number of documents in category Ci across all databases. Coverage would then measure the
fraction of the universally available information about Ci that is stored in D. Alternatively, we
could define Coverage in terms of a variant of the inverse-document-frequency metric (idf ) [SM83]
to express the extent to which a database covers a topic that is rare overall. Although intuitively
appealing, such definitions would be “unstable” since each creation, deletion, or modification of
a web database would change the Coverage of the other available databases.
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the given category. In general, however, we are interested in balancing both
Specificity and Coverage through the introduction of two associated thresholds,
τs and τc, respectively, as captured in the following definition.

Definition 4 Consider a classification scheme C with categories C1, . . . , Cn, and a
database D. The Ideal classification of D in C is the set Ideal(D) of categories Ci
that satisfy the following conditions:

• Specificity(D, Ci) ≥ τs

• Coverage(D, Ci) ≥ τc

• Coverage(D, Ck) < τc or Specificity(D, Ck) < τs for each of the children Ck of
Ci

where 0 ≤ τs ≤ 1 and τc ≥ 1 are given thresholds.

The Ideal classification definition given above provides alternative approaches
for “populating” a hierarchical classification scheme with text databases, de-
pending on the values of the thresholds τs and τc. These values should ul-
timately be determined according to the intended use and audience of the
classification scheme.6

For example, as an “editorial decision,” we might decide that only databases
with a majority of documents on a particular category should be classified
under that category. In this case, the specificity threshold τs should be set to
0.5. The Borland database of technical, programming-related articles7, with
about 60% of its articles about the Java programming language, would then
be classified under the Java category. In contrast, if we decide to be somewhat
more “flexible,” we might insist that, say 30% of the database articles be on
a particular category. The Borland database, with about 30% of its contents
about C/C++ would then be classified under the C/C++ category in addition
to the Java category. A similar analysis applies to the editorial choice of the
value of the coverage threshold τc.

As an alternative to defining the values of the τs and τc thresholds explicitly,
we could establish these values “by example.” Specifically, we could provide a
few examples of known databases together with their “correct” classification.
We could then derive the choice of τs and τc that best fit the classification
examples. While we do not explore this direction further, we should note that
we follow a closely related idea for the experiments in Section 2.4.3, where

6The choice of thresholds might also depend on other factors. For example, consider a hy-
pothetical database with a “perfect” retrieval engine. Coverage might then be more important
than specificity for this database if users extract information from the database by searching. The
retrieval engine identifies exactly the on-topic documents for a query, making the presence of
off-topic documents in the database irrelevant. Then, the “perceived specificity” of the database
for a given category for which it has sufficient Coverage is 1, which would argue for the use of a
coverage-based classification of the database.

7http://www.borland.com/

http://www.borland.com/
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we attempt to estimate the τs and τc used “implicitly” by the human experts
in at the InvisibleWeb site.

Next, we introduce a technique for automatically populating a classification
scheme according to the ideal classification of choice.

2.2 Classifying Databases through Probing

In the previous section, we defined how to classify a database based on the
number of documents that it contains in each topic category. Unfortunately,
databases typically do not export such category-frequency information. In
this section, we describe how we can approximate this information for a given
database without accessing its contents. The whole procedure is divided into
two parts. First, we train our system for a given classification scheme. Then,
we probe each database with queries to decide the categories to which it
should be assigned. More specifically, we follow the algorithm below:

1. Train a document classifier with a set of preclassified documents (Sec-
tion 2.2.1).

2. Extract a set of classification rules from the document classifier and trans-
form classifier rules into queries (Sections 2.2.2 and 2.2.3).

3. Adaptively issue queries to databases, extracting and adjusting the num-
ber of matches for each query using the classifier’s “confusion matrix”
(Section 2.2.4).

4. Classify databases using the adjusted number of query matches (Sec-
tion 2.2.5).

2.2.1 Training a Document Classifier

Our database classification technique relies on a document classifier to create
the probing queries, so our first step is to train such a classifier. We use super-
vised learning to construct the classifier from a set of preclassified documents.
The procedure follows a sequence of steps, described below.

The first step, which helps both efficiency and effectiveness, is to eliminate
from the training set all words that appear either very frequently or very in-
frequently in the training documents. This initial “feature selection” step is
based on Zipf’s law [Zip49], which provides a functional form for the distri-
bution of word frequencies in document collections. Very frequent words are
usually auxiliary words that bear no information content (e.g., “am,” “and,”
“so” in English). Infrequently occurring words are not very helpful for clas-
sification either, because they appear in so few documents that there are no
significant accuracy gains from including such terms in a classifier.
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The elimination of words dictated by Zipf’s law is a form of feature selection.
However, frequency information alone is not, after some point, a good indica-
tor to drive the feature selection process further. Thus, we use an information
theoretic feature selection algorithm that eliminates the terms that have the
least impact on the class distribution of documents [KS97, KS96]. This step
eliminates the features that either do not have enough discriminating power
(i.e., words that are not strongly associated with one specific category) or fea-
tures that are redundant given the presence of another feature. Using this
algorithm we decrease the number of features in a principled way and we
can use a much smaller subset of words to create the classifier, with minimal
loss in accuracy. The surviving features are generally useful for classification
purposes, so classifiers constructed from these features tend to generalize well
to unseen data [KS97, KS96]. In Section 2.4.1, we evaluate experimentally the
effect of feature selection on database classification.

After selecting the features (i.e., words) that we will use for building the docu-
ment classifier, we can use an existing machine learning algorithm to create a
document classifier. Many different algorithms for creating document classi-
fiers have been developed over the last few decades. Well known techniques
include the Naive Bayes classifier [DHS00], C4.5 [Qui92], RIPPER [Coh96],
and Support Vector Machines [Vap98], to name just a few. These document
classifiers work with a flat set of categories. To define a document classifier
over an entire hierarchical classification scheme (Definition 1), we train one
flat document classifier for each internal node of the hierarchy.

Once we have trained a document classifier, we could use it to classify all the
documents in a database of interest to determine the number of documents
about each category in the database. Of course, this requires having access
to the whole contents of the database, which is not a realistic requirement for
hidden-web databases. We relax this requirement presently.

2.2.2 Defining Query Probes from a Rule-Based Document
Classifier

In this section, we first describe the class of rule-based classifiers and then we
show how we can use a rule-based classifier to generate a set of query probes
that will help us estimate the number of documents for each category of
interest in a text database.

In a rule-based classifier, the classification decisions are based on a set of logical
rules: the antecedents of the rules are conjunctions of words and the conse-
quents are the category assignments for documents. For example, the follow-
ing rules are part of a classifier for the three categories “Sports,” “Health,” and
“Computers”:

ibm AND computer → Computers
jordan AND bulls → Sports
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diabetes → Health
cancer AND lung → Health
intel → Computers

Such rules are used to classify previously unseen documents (i.e., documents
not in the training set). For example, the first rule would classify all docu-
ments containing the words “ibm” and “computer” into the category “Com-
puters.”

Definition 5 A rule-based document classifier for a flat category set C = {C1, . . . , Cn}
consists of a set of rules pk → Clk , k = 1, . . . , m, where pk is a conjunction of words
and Clk ∈ C. A document d matches a rule pk → Clk if all the words in that
rule’s antecedent, pk, appear in d. If a document matches multiple rules with dif-
ferent classification decisions, the final classification decision depends on the specific
implementation of the rule-based classifier.

We can simulate the behavior of a rule-based classifier over all documents of
a database by mapping each rule pk → Clk of the classifier into a boolean
query qk that is the conjunction of all words in pk. Thus, if we send the query
probe qk to the search interface of a database D, the query will match exactly
the f (qk) documents in the database D that would have been classified by the
associated rule into category Clk . For example, we map the rule jordan AND
bulls → Sports into the boolean query [jordan AND bulls]8. We expect this
query to retrieve mostly documents in the “Sports” category. Now, instead
of retrieving the documents themselves, we just keep the number of matches
reported for this query (it is quite common for a database to start the results
page with a line like “X documents found”; even ballpark approximations are
good enough for our classification task), and use this number as a measure of
how many documents in the database match the condition of this rule.

From the number of matches for each query probe, we can construct a good
approximation of the Coverage and Specificity vectors for a database D (Sec-
tion 2.1). We can approximate the number of documents in D in category Ci
as the total number of matches from all query probes derived from rules with
category Ci as a consequent. Using this information we can approximate the
Coverage and Specificity vectors for D as follows:

Definition 6 Consider a text database D and a rule-based classifier for a set of cat-
egories C. For each query probe q derived from the classifier, database D returns the
number of matches f (q). The estimated coverage of D for a category Ci ∈ C,
ECoverage(D, Ci), is the total number of matches for the Ci query probes.

ECoverage(D, Ci) = ∑
q is a query probe for Ci

f (q)

8In Section 2.4.2, we examine the case where the database does not support boolean queries.
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Definition 7 In the same setting as Definition 6, the estimated specificity of D
for Ci, ESpecificity(D, Ci), is

ESpecificity(D, Ci) =
ESpecificity(D, Parent(Ci)) · ECoverage(D, Ci)

∑Cj is a child of Parent(Ci) ECoverage(D, Cj)

As a special case, ESpecificity(D, “root”) = 1.

Thus, Definition 7 tells us that the estimated specificity for a category Ci
in D is the estimated percentage of documents in D that are in Parent(Ci)
multiplied by the percentage of documents in Parent(Ci) that are also in Ci.

For notational convenience, we define:

ECoverage(D) = 〈ECoverage(D, Ci1), . . . , ECoverage(D, Cim)〉
ESpecificity(D) = 〈ESpecificity(D, Ci1), . . . , ESpecificity(D, Cim)〉

when the set of categories {Ci1 , . . . , Cim} is clear from the context.

Example 3 Consider a small, rule-based document classifier for categories C1=“Sports,”
C2=“Computers,” and C3=“Health” consisting of the five rules listed previously. To
classify the ACM Digital Library database, we send the query [ibm AND computer],
which results in 6646 matching documents (Figure 2.2). The other four queries re-
turn the matches described in Figure 2.2. Using these numbers we can estimate that
the ACM Digital Library has 0 documents about “Sports,” 6646+2380=9026 docu-
ments about “Computers,” and 18+34=52 documents about “Health”. Thus, the
ECoverage(ACM) vector for this set of categories is:

ECoverage(ACM) = (0, 9026, 52)

and the respective ESpecificity(ACM) vector is:

ESpecificity(ACM) =
(

0
0 + 9026 + 52

,
9026

0 + 9026 + 52
,

52
0 + 9026 + 52

)

As defined above, the computation of ECoverage might count documents more
than once, since the same document might match multiple query probes. To
address this issue, we could issue query probes in order, augmenting each
query probe with the negation of all earlier query probes. Consider the five
example rules above, in the order they are listed. The first query would be
[ibm AND computer], as before. However, the second query becomes [jordan
AND bulls AND NOT (ibm AND computer)], to not match (and count) any doc-
ument that matches the first query probe. This technique ensures that the
final number of matches for each category is not artificially inflated by docu-
ments that match multiple query probes. Unfortunately, if implemented in a
naive way, this overlap-elimination strategy may result in rather long query
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ACM

Digital Library
34 matches


6646 matches


0 matches


18 matches


2380 matches


diabetes


intel


cancer AND lung


jordan AND bulls


ibm AND computer


Figure 2.2: Sending probes to the ACM Digital Library database with
queries derived from a document classifier.

probes, which might not be accepted by the databases. This problem could
be partially solved by “breaking” the long queries into smaller conjunctive
queries. Then, by exploiting the inclusion-exclusion principle and the num-
ber of matches for each of the smaller probes, we can calculate the number
of matches for the complex query. For example, instead of sending the query
[jordan AND bulls AND NOT (ibm AND computer)], we can find the number
of matches for the query [jordan AND bulls] and then subtract from it the
number of matches generated for the query [jordan AND bulls AND ibm AND
computer]. Unfortunately, the number of probes needed for this strategy in-
creases exponentially with the query length. In Section 2.4, we experimentally
evaluate the benefits of this expensive overlap-elimination strategy.

2.2.3 Extracting Query Probes from Numerically Parameter-
ized Document Classifiers

We have seen so far that we can directly use a rule-based classifier to generate
the query probes required for our database classification technique. However,
restricting QProber to only rule-based classifiers would prevent us from ex-
ploiting other classification strategies as they are developed. In this section,
we describe how we can adapt numerically parameterized classifiers for use
with QProber. In particular, we describe an algorithm that approximates a lin-
ear binary classifier with a set of classification rules. We also describe briefly
how the same algorithm can be modified to approximate different types of
classifiers. Finally, we give some pointers to existing work in the area of rule
extraction. Before describing the algorithm in detail, we define the terminol-
ogy that we will use.

Definition 8 A binary classifier decides whether a document, represented using m
features (i.e., words in our context), belongs to one class or not. A binary linear



16 2.2 Classifying Databases through Probing

classifier makes this decision by calculating, during the training phase, m weights
w1, . . . , wm and a threshold b determining a hyperplane such that all points t =
〈t1, . . . , tm〉 in the hyperplane satisfy the equation:

m

∑
i=1

witi = b (2.1)

This hyperplane divides the m-dimensional document space into two regions: the
region with the documents that belong to the class in question, and the region with
all other documents. Then, given the m-dimensional representation 〈s1, . . . , sm〉 of a
document [SB88], the classifier calculates the document’s “score” as ∑m

i=1 wisi. The
value of this score relative to that of threshold b determines the classification decision
for the document.

A large number of classifiers fall into the category of linear classifiers. Ex-
amples include Naive Bayes and Support Vector Machines (SVM) with linear
kernel functions. Details on how to calculate these weights for SVMs and for
Naive Bayesian classifiers can be found in [Bur98] and in [Nil90], respectively.
A classifier for n classes can be created using n binary classifiers, one for each
class. Note that such a composite classifier may result in a document being
categorized into multiple classes or into no classes at all.

We can use Equation 2.1 to approximate a linear classifier with a rule-based
classifier that will be used to generate the query probes. The intuition behind
the rule-extraction algorithm that we introduce next is that the presence of a
few highly weighted terms in a document suffices for the linear classifier to
make a positive decision (i.e., go above threshold). Our rule-extraction algo-
rithm works by generating rules iteratively. In each iteration we create rules
of different length, i.e., with a different number of terms in the antecedents.
During the first iteration, we consider only rules with one term. If the weight
of a term is higher than the threshold b, then this term is qualified to form a
rule, since the presence of this term alone suffices to classify a document into
the category. For efficiency and simplicity, the rules are formed as conjunc-
tions of terms with no negations. After creating all the rules with one term,
the algorithm proceeds to the next iteration, in which it creates rules with two
terms, and so on.

The algorithm is described in more detail in Figure 2.3. In general, when
all weights defining the separating hyperplane are non-negative, a sufficient
condition for a set of terms to form a rule is that the sum of the weights
of its terms exceeds the value of the threshold b. While the classifiers that
we consider do not necessarily produce exclusively non-negative weights, we
nevertheless have found that our sufficiency criteria for extracting rules works
well. Our algorithm can be further optimized if we impose more constraints
on the rule-generation process (e.g., by bounding the number of generated
rules or the number of words in each rule), but such optimizations are beyond
the scope of this thesis.
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GenerateRules(int[] w, int b)
Rules R = ∅
Candidates C = {{ f1}, { f2}, . . . , { fm}}
for each set s ∈ C

support = CalculateSupport(s, w)
if support < ε

then C = C− s
k = 1
while (C 6= ∅)

for each set s ∈ C
support = CalculateSupport(s, w)
r = GetRule(s)
if support>b and Useful(r)
then R = R ∪ r; C = C− s

C = GenerateNewSets(C, k)
k = k + 1

return R

CalculateSupport(set s, int[] w)
int sup = 0
for each term ti ∈ s

sup = sup + wi
return sup

GenerateNewSets(set C, int k)
// All sets in C have k terms

set R = ∅
for each set ci ∈ C

find the set F of all sets in C
that have k− 1 terms
in common with ci

for each set fi ∈ F
R = R ∪ {ci ∪ fi}

return R

Figure 2.3: Generating rules from a set of weights wi and a threshold b.

As an additional property, the rules that we derive from a classifier have to be
“useful”: a rule is useful if and only if it covers “sufficiently many” examples
from the training set and its precision is greater than 0.5 (i.e., it matches more
correct documents than incorrect ones). The terms that form an extracted rule
are removed from further consideration and will not participate in later iter-
ations of the algorithm. Also, training examples that match a produced rule
are removed from the training set, and will not be used in later iterations. To
proceed to the next iteration, the algorithm expands unused term sets by one
term, in a spirit similar to an algorithm for finding “association rules” [AS94].
In our algorithm, the “support” of a set of terms is defined as the sum of the
weights of its terms, and the objective is to extend the “small” itemsets (i.e.,
the sets of terms whose sum of weights is smaller than b) to get new itemsets
with larger support.

Our rule extraction algorithm can be used for classifiers that divide the space
using a non-linear polynomial as well. For example, SVMs with polynomial
kernels can be treated in a similar way by considering the weights associated
with all the higher order terms in the function.

The task of rule extraction from classification models that do not explicitly
represent their output as rules has been studied extensively in the machine
learning community. An example is the C4.5RULES algorithm [Qui92], which
generates a set of production rules from a decision tree. Another example is
Trepan [Cra96], which extracts a comprehensible set of rules from a neural
network. Flake et al. [FGLG02] describe an algorithm for extraction of rules
from nonlinear SVMs. The ongoing research in rule extraction can be directly
leveraged to adapt different learning models for use with QProber.
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2.2.4 Adjusting Probing Results

QProber relies on document classifiers to define query probes and obtain
category-frequency information for a database. Unfortunately, document clas-
sifiers are not perfect, because they can misclassify documents into incorrect
categories and leave any documents that do not match any rules unclassified.
In this section, we present a novel algorithm to adjust our initial probing
results to account for such potential errors.

It is common practice in the machine learning community to report document
classification results using a confusion matrix [KP98]. We adapt this notion of
a confusion matrix for use in our probing scenario:

Definition 9 The normalized confusion matrix M = (mij) of a set of query
probes for categories C1, . . . , Cn is an n × n matrix, where mij is the sum of the
number of matches generated from documents in category Cj for category Ci query
probes, divided by the total number of documents in category Cj.

In a perfect setting, the probes for Ci match only documents in Ci and each
document in Ci matches exactly one probe for Ci. In this case the confusion
matrix is the identity matrix.

The algorithm to create the normalized confusion matrix M is:

1. Generate the query probes from the classifier rules and probe a database
of unseen, preclassified documents (i.e., the development set).

2. Create an auxiliary confusion matrix X = (xij) and set xij equal to the
sum of the number of matches from Cj documents for category Ci query
probes.

3. Normalize the columns of X by dividing column j with the number
of documents in the development set in category Cj. The result is the
normalized confusion matrix M.

Example 4 Suppose that we have a document classifier for three categories C1=“Sports,”
C2=“Computers,” and C3=“Health.” Consider 5100 unseen, pre-classified docu-
ments with 1000 documents about “Sports,” 2500 documents about “Computers,”
and 1600 documents about “Health.” After probing this set with the query probes
generated from the classifier, we construct the following confusion matrix:

M =




600
1000

100
2500

200
1600

100
1000

2000
2500

150
1600

50
1000

200
2500

1000
1600


 =




0.60 0.04 0.125

0.10 0.80 0.09375

0.05 0.08 0.625




Element m23 = 150
1600 indicates that the probes for C2 mistakenly generated 150

matches from the documents in C3 and that there are a total of 1600 documents
in category C3.
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Interestingly, multiplying the confusion matrix with the Coverage vector rep-
resenting the correct number of documents for each category in the devel-
opment set yields, by definition, the ECoverage vector with the number of
documents in each category in the development set as matched by the query
probes.

Example 5 The Coverage vector with the actual number of documents in the develop-
ment set T for each category is Coverage(T) = (1000, 2500, 1600). By multiplying
M by this vector, we get the distribution of document categories in T as estimated by
the query probing results.




0.60 0.04 0.125
0.10 0.80 0.09375
0.05 0.08 0.625




︸ ︷︷ ︸
M

×



1000
2500
1600




︸ ︷︷ ︸
Coverage(T)

=




900
2250
1250




︸ ︷︷ ︸
ECoverage(T)

Proposition 1: The normalized confusion matrix M is invertible when the rules
of the document classifier used to generate M match more correct documents than
incorrect ones. 2

Proof 1: From the assumption on the document classifier, we have mii > ∑n
j=1,i 6=j mij.

Hence, M is a diagonally dominant matrix with respect to columns. Then the Ger-
schgorin circle theorem [Joh71, Ger31] indicates that M is invertible. 2

We note that the condition that rules match more correct documents than
incorrect ones is a reasonable one, but a full discussion of this point is beyond
the scope of this thesis.

Proposition 1, together with the observation in Example 4, suggests a way to
adjust probing results to compensate for classification errors. More specifi-
cally, for an unseen database D that follows the same distribution of classifi-
cation errors as in our training collection, it holds that:

M× Coverage(D) ∼= ECoverage(D)

Then, multiplying by M−1 we have:

Coverage(D) ∼= M−1 × ECoverage(D)

Hence, during the classification of a database D, we will multiply M−1 by the
probing results summarized in vector ECoverage(D) to obtain a better approxi-
mation of the actual Coverage(D) vector. We refer to this adjustment technique
as Confusion Matrix Adjustment or CMA for short.
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2.2.5 Using Probing Results for Classification

So far, we have seen how to accurately approximate the document category
distribution in a database. We now describe a probing strategy to classify a
database using these results.

We classify databases in a top-to-bottom way. Each database is first classified
by the root-level classifier and is then recursively “pushed down” to the lower
level classifiers. A database D is pushed down to the category Cj when both
ESpecificity(D, Cj) and ECoverage(D, Cj) are no less than both threshold τes (for
specificity) and τec (for coverage), respectively. These thresholds will typically
be equal to the τs and τc thresholds used for the Ideal classification. The final
set of categories into which we classify D is the approximate classification of D
in C.

Definition 10 Consider a classification scheme C with categories C1, . . . , Cn and
a database D. If ESpecificity(D) and ECoverage(D) are the approximations of the
ideal Specificity(D) and Coverage(D) vectors, respectively, the approximate classifi-
cation of D in C is the set Approximate(D) of categories Ci that satisfy the following
conditions:

• ESpecificity(D, Ci) ≥ τes and ECoverage(D, Ci) ≥ τec

• ESpecificity(D, Cj) ≥ τes and ECoverage(D, Cj) ≥ τec for all ancestors Cj of
Ci.

• ECoverage(D, Ck) < τec or ESpecificity(D, Ck) < τes for all children Ck of Ci

where 0 ≤ τes ≤ 1 and τec ≥ 1 are given thresholds.

The algorithm that computes this set is presented in Figure 2.4. To classify a
database D in a hierarchical classification scheme, we call Classify(“root”, D,
τec, τes, 1).

Example 6 Figure 2.5 shows how we categorized the ACM Digital Library database.
Each node is annotated with the ECoverage and ESpecificity estimates determined
from query probes. The subset of the hierarchy that we explored with these probes
depends on the τes and τec thresholds of choice, which for this case were τes = 0.5
and τec = 100. For example, the subtree rooted at node “Science” was not explored,
because the ESpecificity of this node, 0.042, is less than τes. Intuitively, although we
estimated that around 430 documents in the collection are generally about “Science,”
this was not the focus of the database and hence the low ESpecificity value. In contrast,
the “Computers” subtree was further explored because of its high ECoverage (9919)
and ESpecificity (0.95), but not beyond its children, since their ESpecificity values
are less than τes. Hence the database is classified in Approximate={“Computers”}.
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Classify(Category C, Database D, τec, τes, ESpecificity(D, C))
Result = ∅
if C is a leaf node

then return {C}
Probe database D with the probes derived from the classifier for the subcategories of C
Calculate ECoverage from the number of matches for the probes
ECoverage(D) = M−1×ECoverage(D) // Confusion Matrix Adjustment
Calculate the ESpecificity vector, using ECoverage(D) and ESpecificity(D, C)
for each subcategory Ci of C

if ESpecificity(D, Ci) ≥ τes AND ECoverage(D, Ci) ≥ τec
then Result = Result ∪ Classify(Ci , D, τec, τes, ESpecificity(D, Ci))

if Result == ∅
then return {C} // D was not “pushed” down
else return Result

Figure 2.4: Algorithm for classifying a database D into the category
subtree rooted at category C.

C/C++ Java Visual BasicPerl

Arts

(0,0)

Sports

(22, 0.008)

Science

(430, 0.042)

Health

(0,0)

Programming

(1042, 0.171)

Hardware

(2709, 0.44175)

Software

(2060, 0.33725)

Computers

(9919, 0.95)

Root

Figure 2.5: Classifying the ACM Digital Library database.

A potential problem with this algorithm is that a correct classification decision
depends on correct classifications in all the nodes that are on the path from
the root node to the correct category node(s). Any error made along the path
to the correct node is unrecoverable. An alternative approach is to probe the
database using the classifiers of all the nodes in the classification scheme and
then decide on the classification based on the overall results. However, this
approach would require a much larger number of query probes and would
considerably increase the cost of our method. Previous work in hierarchical
document classification [Sah98] has outlined other approaches to address this
problem, but a full discussion of such extensions is beyond the scope of this
work. We simply note here that the techniques used in the case of hierarchical
document classification can be adapted for use in the case of hierarchical
database classification that we address in this thesis.
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2.3 Experimental Setting

We now describe the data (Section 2.3.1), techniques we compare (Section 2.3.2),
and metrics (Section 2.3.3) for our experimental evaluation.

2.3.1 Data Sets

To evaluate our classification techniques, we first define a comprehensive clas-
sification scheme (Section 2.1.1) and then build text classifiers using a set of
preclassified documents. We also specify the databases over which we tuned
and tested our probing techniques.

Rather than defining our own classification scheme arbitrarily from scratch,
we instead rely on that of existing directories. More specifically, for our ex-
periments we picked the five largest top-level categories from Yahoo!, which
were also present in InvisibleWeb. These categories are “Arts,” “Computers,”
“Health,” “Science,” and “Sports.” We then expanded these categories up to
two more levels by selecting the four largest Yahoo! subcategories also listed
in InvisibleWeb. (InvisibleWeb largely agrees with Yahoo! on the top-level cat-
egories in their classification scheme.) The resulting three-level classification
scheme consists of 72 categories, 54 of which are leaf nodes in the hierarchy.
A small fraction of the classification scheme is shown in Figure 2.5.

To train a document classifier over our hierarchical classification scheme we
used postings from newsgroups that we judged relevant to our various leaf-
level categories. For example, the newsgroups comp.lang.c and comp.lang.c++
were considered relevant to category “C/C++.” We collected 500,000 articles
from April through May 2000. 54,000 out of the 500,000 articles, 1,000 per leaf
category, were used to train the document classifiers, and 27,000 articles were
set aside as a development collection for the classifier (500 articles per leaf cat-
egory). 381 of the articles in the training set were duplicates, and 105 of them
were crossposted to multiple newsgroups in our dataset. We removed all
headers from the newsgroup articles, with the exception of the “Subject” line;
we also removed the e-mail addresses contained in the articles. Except for
these modifications, we made no other changes to the collected documents.
We used the remaining 419,000 articles to build controlled databases as we
report below.

To evaluate database classification strategies we use two kinds of databases:
“Controlled” databases that we assembled locally and that allowed us to per-
form a variety of sophisticated studies, and real “Web” databases:

Controlled Database Set: We assembled 500 databases using the 419,000
newsgroup articles not used in training the classifier. 7,246 of the articles
were duplicates. As before, we assume that each article is labeled with one
category from our classification scheme, according to the newsgroup where it
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URL Brief Description Category
http://www.cnnsi.com/ CNN Sports Illustrated Sports
http://www.tomshardware.com/ Tom’s Hardware Guide Computers
http://hopkins-aids.edu/ Johns Hopkins AIDS Service AIDS
http://odyssey.lib.duke.edu/ Duke University Rare Books Literature
http://www.osti.gov/ Office of Scientific and Technical Information Science

Table 2.1: Real web databases in the Web set.

originated. Thus, an article from newsgroups comp.lang.c or comp.lang.c++
will be regarded as relevant to category “C/C++,” since these newsgroups
were assigned to category “C/C++.” The size of the 500 Controlled databases
that we created ranged from 25 to 25,000 documents. Out of the 500 data-
bases, 350 are “homogeneous,” with documents from a single category, while
the remaining 150 are “heterogeneous,” with a variety of category mixes. We
define a database as “homogeneous” when it has articles from only one node,
regardless of whether this node is a leaf node or not. If it is not a leaf node,
then it has equal number of articles from each leaf node in its subtree. The
“heterogeneous” databases, on the other hand, have documents from differ-
ent categories that reside in the same level in the hierarchy (not necessarily
siblings), with different mixture percentages. We believe that these databases
model real-world text databases, with a variety of sizes and foci. These da-
tabases were indexed and queried by a SMART-based program [SM97] sup-
porting both boolean and vector-space retrieval models.

Web Database Set: We also evaluate our techniques on real web-accessible
databases over which we do not have any control. We picked the first five
databases listed in the InvisibleWeb directory under each node in our clas-
sification scheme (recall that our classification scheme is a portion of Invisi-
bleWeb). This resulted in 130 real web databases. (Some of the lower level
nodes in the classification scheme have fewer than five databases assigned to
them.) 12 databases out of the 130 have articles that are “newsgroup style”
discussions similar to the databases in the Controlled set, while the other 118
databases have articles of various styles, ranging from research papers to film
reviews. For each database in the Web set, we constructed a simple wrapper
to send a query and get back the number of matches for each query, which
is the only information that our database classification procedure requires.
From the initially selected databases, very few (about five) did not return
the number of matches for the submitted queries. Since QProber needs these
numbers to classify the databases, we decided not to include these databases
in the Web set. The database wrappers were manually configured to send
conjunctive queries to each web database in the proper format. (For example,
some databases require the use of the + sign in front of the keywords, while
others require the use of the “AND” operator.) Also, whenever possible, we
configured the wrappers with the appropriate settings so that the full under-
lying databases (rather than, say, a topically focused fraction) are searched.
Table 2.1 lists example databases from the Web set.

http://www.cnnsi.com/
http://www.tomshardware.com/
http://hopkins-aids.edu/
http://odyssey.lib.duke.edu/
http://www.osti.gov/
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2.3.2 Techniques for Comparison

We tested variations of QProber’s classification technique against two alter-
native strategies. The first one is an adaptation of the technique described
in [CCD99], which we refer to as “Document Sampling.” The second one is
a method described in [WMY00] that was specifically designed for database
classification. We will refer to this method as “Title-based Querying.” The
methods are described in detail below.

2.3.2.1 QProber Variations

QProber, described in Section 2.2, uses a document classifier for each inter-
nal node of our hierarchical classification scheme. Several parameters and
options are involved in the training of the document classifiers. For feature
selection, we start by eliminating from consideration any word in a list of
400 very frequent words (e.g., “a”, “the”) from the SMART [SM97] informa-
tion retrieval system. We then further eliminate all infrequent words that
appeared in fewer than three documents. We treated the root node of the clas-
sification scheme as a special case, since it covers a much broader spectrum
of documents. For this node, we eliminated words that appeared in fewer
than five documents. Also, we considered applying the information theoretic
feature selection algorithm from [KS97, KS96]. We studied the performance
of our system without this feature selection step (FS=off ) or with this step,
in which we kept only the 10% most discriminating words (FS=on). We also
experimented with different kinds of classifiers. We created rule-based clas-
sifiers using RIPPER [Coh96], as well as using C4.5RULES to extract rules
from decision trees generated by C4.5 [Qui92]. We refer to these two versions
of QProber as QP-RIPPER and QP-C4.5, respectively. Additionally, we used
our technique, described in Section 2.2.3, to derive classification rules from
Naive Bayes classifiers [DHS00] and Support Vector Machines with linear ker-
nels [Joa98]. We refer to these versions as QP-Bayes and QP-SVM, respectively.
After setting up the system, the main parameters that can be varied in our da-
tabase classification technique are thresholds τec (for coverage) and τes (for
specificity). Different values for these thresholds result in different approxi-
mations, Approximate(D), of the ideal classification, Ideal(D).

2.3.2.2 Document Sampling (DS)

Callan et al. [CCD99, CC01] use query probing to automatically construct a
content summary of a text database (i.e., to extract the vocabulary and associ-
ated word-frequency statistics). Queries are sent to the database to retrieve a
representative random document sample. The documents retrieved are ana-
lyzed to extract the words that appear in them. Although this technique was
not designed for database classification, we decided to adapt it to our task as
follows:
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1. Pick a random word from a dictionary and send a one-word query to
the database in question.

2. Retrieve the top-N documents returned by the database for the query.

3. Extract the words from each document and update the list and fre-
quency of words accordingly.

4. If a termination condition is met, go to Step 5; else go to Step 1.

5. Use a modification of the algorithm in Figure 2.4 that classifies the doc-
uments in the sample document collection rather than probing the data-
base itself with the classification rules.

For Step 1, we use a random word from the approximately 100,000 words in
our newsgroup collection. For Step 2, we use N = 4, which is the value that
Callan et al. recommend in [CCD99]. Finally, for the termination condition
in Step 4 we used both the termination conditions described in [CC01] and
in [CCD99]. In [CC01] the algorithm terminates after the retrieval of 500 doc-
uments, while in [CCD99] the algorithm terminates when the vocabulary and
frequency statistics associated with the sample document collection converge
to a reasonably stable state. We refer to the version of the Document Sam-
pling technique described in [CCD99] as DS99, while we refer to the newer
version described in [CC01] simply as DS. After the construction of the lo-
cal document sample, the adapted technique can proceed almost identically
as in Section 2.2.5 by classifying the locally stored document sample rather
than the original database. In our experiments using Document Sampling and
linear classifiers, we used the originally generated linear classifiers and not
the rule-based approximations, since the documents in this case are available
locally and there is no need to approximate the existing classifiers with rule
sets. The variations of Document Sampling that use different classifiers are
named DS-RIPPER, DS-C4.5, DS-Bayes, and DS-SVM, depending on the clas-
sifier used. We also tested the DS99 technique with different classifiers; the
results, however, were consistently worse compared to those for the newer
DS technique. For brevity, in Section 2.4 we only report the results obtained
for DS99 with the RIPPER document classifier. A crucial difference between
the Document Sampling technique and QProber is that QProber only uses the
number of matches reported by each database, while the Document Sampling
technique requires retrieving and analyzing the actual documents from the
database.

2.3.2.3 Title-based Querying (TQ)

Wang et al. [WMY00] present three different techniques for the classification
of text databases. For our experimental evaluation we picked the method they
deemed best. Their technique creates one long query for each category using
the title of the category itself (e.g., “Baseball”) augmented by the titles of all
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of its subcategories. For example, the query for category “Baseball” is [“base-
ball mlb teams minor leagues stadiums statistics college university...”]. The query
for each category is sent to the database in question, the top ranked results
are retrieved, and the average similarity [SM97] of these documents and the
query defines the similarity of the database with the category. The database
is then classified into the categories that are most similar with it. A signifi-
cant problem with this approach is the fact that a large number of web-based
databases will prune the query if it exceeds a specific length. For example,
Google truncates any query with more than ten words. The results returned
from the database in such cases will not be the expected ones with respect to
all the original query terms. The details of the algorithm are described below.

1. For each category Ci:

(a) Create an associated “concept query,” which is simply the title of the
category augmented with the titles of its subcategories.

(b) Send the “concept query” to the database in question.

(c) Retrieve the top-N documents returned by the database for this
query.

(d) Calculate the similarity of these N documents with the query. The
average similarity will be the similarity of the database with cate-
gory Ci.

2. Rank the categories in order of decreasing similarity with the database.

3. Assign the database to the top-K ranked categories from the hierarchy.

To create the concept queries of Step 1, we augmented our hierarchy with an
extra level of “titles,” as described in [WMY00]. For Step 1(c) we used the
value N = 10, as recommended by the authors. We used the cosine similarity
function with tf.idf weighting [SB88]. Unfortunately, the value of K in Step 3
is left as an open parameter in [WMY00]. We decided to favor this technique
in our experiments by “revealing” to it the correct number of categories into
which each database should be classified. Of course this information would
not be available in a real setting, and was not provided to QProber or the
Document Sampling technique.

2.3.3 Evaluation Metrics

We evaluate classification algorithms by comparing the approximate classifica-
tion Approximate(D) that they produce against the ideal classification Ideal(D).
We could just report the fraction of the categories in Approximate(D) that are
correct (i.e., that also appear in Ideal(D)). However, this would not capture
the nuances of hierarchical classification. For example, we may have classi-
fied a database in the category “Sports,” while it is a database about “Basket-
ball.” The metric above would consider this classification as absolutely wrong,
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which is not appropriate since, after all, “Basketball” is a subcategory of
“Sports.” With this in mind, we adapt the precision and recall metrics from in-
formation retrieval [CM63]. We first introduce an auxiliary definition. Given
a set of categories N, we “expand” it by including all the subcategories of the
categories in N — in essence, taking the downward closure of the set of cate-
gories N in the classification hierarchy C. Thus Expanded(N) = {c ∈ C|c ∈ N
or c is in a subtree of some n ∈ N}. Now, we can define precision and recall as
follows.

Definition 11 Consider a database D that is classified into the set of categories
Ideal(D), and an approximation Approximate(D) of Ideal(D). Let Correct = Expanded(Ideal(D))
and Classified = Expanded(Approximate(D)). Then the precision and recall of the
approximate classification of D are:

precision =
|Correct∩ Classified|

|Classified|
recall =

|Correct∩ Classified|
|Correct|

To condense precision and recall into one number, we use the F1-measure [vR79],

F1 =
2 · precision · recall
precision + recall

which is high only when both precision and recall are high, and is low for
design options that trivially obtain high precision by sacrificing recall or vice
versa.

Example 7 Consider the classification scheme in Figure 2.5. Suppose that the ideal
classification for a database D is Ideal(D)={“Programming”}. Then, the Correct
set of categories include “Programming” and all its subcategories, namely “C/C++,”

“Perl,” “Java,” and “Visual Basic.” If we approximate Ideal(D) as Approximate(D)={“Java”}
using the algorithm in Figure 2.4, then we do not manage to capture all categories
in Correct. In fact, we miss four out of five such categories and hence recall=0.2 for
this database and approximation. However, the only category in our approximation,

“Java,” is a correct one, and hence precision=1. The F1-measure summarizes recall
and precision in one number, F1 = 2·1·0.2

1+0.2 = 0.33.

An important property of classification strategies over the web is scalability.
We measure the efficiency of the various techniques that we compare by mod-
eling their cost. More specifically, the main cost we quantify is the number
of “interactions” required with the database to be classified, where each in-
teraction is either a query submission (needed for all three techniques) or the
retrieval of a database document (needed only for Document Sampling and
Title-based Querying). Of course, we could include other costs in the compar-
ison (namely, the cost of parsing the results and processing them), but we
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believe that they would not affect our conclusions, since these costs are CPU-
based and are small compared to the cost of interacting with the databases
over the Internet.

All methods parse the query result pages to get the information they need.
Our method requires very simple parsing, namely just getting the number of
matches from a line of the result. The other methods require a more expen-
sive analysis to identify the actual documents in the result. To simplify our
analysis, we disregard the cost of result parsing, since considering this cost
would only benefit our technique in the comparison. Additionally, all meth-
ods have a local processing cost to analyze the results of the probing phase.
This cost is negligible compared to the cost of query submission and docu-
ment retrieval: Our method requires the multiplication of the results with
the inverse of the normalized confusion matrices. These are m×m matrices
where m is at most the largest number of subcategories for a category in the
hierarchical classification scheme. (Recall that we have a small rule-based doc-
ument classifier for each node in a hierarchical classification scheme.) Since
m will rarely exceed, say, 15 categories in a reasonable scheme, this cost will
be small. The local processing costs for Document Sampling are similar to our
method, except for the fact that Document Sampling have to classify the locally
stored collection of documents. We also consider this cost negligible relative
to other cost components. Title-based Querying requires calculating the similar-
ities of the documents with the query, and ranking the categories accordingly.
Again, we do not consider this cost in our comparative evaluation.

2.4 Experimental Results

We now report experimental results that we used to tune our system (Sec-
tion 2.4.1) and to compare the different classification alternatives both for
the Controlled database set (Section 2.4.2) and for the Web database set (Sec-
tion 2.4.3). Then, in Section 2.5 we report a brief evaluation of QProber’s
performance for databases that make their contents available for crawling.

2.4.1 Tuning QProber and DS

QProber and DS have some open parameters that we tuned experimentally by
using a set of 100 Controlled databases (Section 2.3.1). These databases did not
participate in any of the subsequent experiments.

We examined whether the information theoretic feature selection (Section 2.3.2)
and the confusion matrix adjustment of the probing results (Section 2.2.4) af-
fected the classification accuracy. We ran QProber with (FS=on)9 and with-
out (FS=off ) this feature selection step, and with (CMA=on) and without

9When we used the feature selection step, we selected the 10% best words the training set.
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(CMA=off ) the confusion matrix adjustment step, and we evaluated the clas-
sification results of the individual classifiers. We did this for our four ver-
sions of QProber, namely QP-RIPPER, QP-C4.5, QP-Bayes, and QP-SVM. Un-
fortunately, the C4.5 classifier underlying QP-C4.5 could not handle the train-
ing set with all the features, so we could not create the C4.5 classifiers with
FS=off. However, it is reported that feature selection helps C4.5 avoid overfit-
ting [KJ97, KS96], hence we believe that the results without feature selection
would have been worse for QP-C4.5 anyway. We performed the same experi-
ment for the five different versions of DS as well. Since the conclusions from
the experiments were similar, in the following we only report the results for
the tuning of QProber.

For evaluation, we used the F1-measure for the flat set of categories associ-
ated with each classifier and for each of the 100 databases that contained
documents in the categories in question. We compared the average perfor-
mance of the classifiers over the training set. Tables 2.2 through 2.5 report the
results for all the non-leaf nodes of our classification scheme; the best results
are highlighted in boldface.

The results were conclusive for the confusion matrix adjustment (CMA). For
QP-RIPPER, the results were consistently better after the application of the
adjustment. For the other QProber versions, CMA improved the results in
the majority of the cases, especially for the nodes in the higher levels of the
hierarchy, which have the highest impact on overall classification accuracy.
We believe that the adjustment did not have the desired results in some lower-
level nodes because the number of documents used to create the confusion
matrices was smaller for these nodes than for the higher-level ones (where
CMA was always beneficial). Notwithstanding these shortcomings of CMA,
we decided to use CMA for the rest of our experiments.

Our results for the feature selection step agreed mostly with existing results
in the area. In particular, the results for QP-Bayes were consistently better
after the application of the feature selection step. This result agrees with ear-
lier work in the field of feature selection [KS96]. For QP-RIPPER, the results
were mixed: feature selection improved the classifier’s accuracy for most, but
not all, of the nodes. However, the loss in accuracy was small for those cases
where feature selection hurt accuracy. Given that after feature selection the
training of the classifier can be performed in a fraction of the time that would
be required otherwise, we believe that feature selection is a worthwhile step in
this case as well. Finally, the results for QP-SVM were inconclusive, confirm-
ing earlier results in the area of document classification [Joa98]: the impact of
the feature selection step on this version of QProber was significantly smaller
than on the other cases.

For the experiments in the remainder of this chapter, we picked the best classi-
fier for each node individually. Hence some nodes used the feature selection
step while others did not. This flexibility is an advantage of the hierarchical
classification scheme over a simple flat scheme: each node can be configured
separately. Even if this results in longer tuning time, this flexibility can lead
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QP-Bayes
FS=on FS=off

Node CMA=on CMA=off CMA=on CMA=off
root 0.8957 0.8025 0.8512 0.7811
root-arts 0.9152 0.9136 0.8223 0.8313
root-arts-literature 0.6811 0.6984 0.6595 0.6822
root-arts-music 0.8736 0.8712 0.5298 0.8160
root-computers 0.7715 0.7384 0.7515 0.7245
root-computers-programming 0.9617 0.8854 0.8297 0.8633
root-computers-software 0.7158 0.7654 0.6679 0.7856
root-health 0.7966 0.7871 0.5740 0.7036
root-health-diseases 0.9213 0.9034 0.7213 0.8060
root-health-fitness 0.8707 0.8854 0.7516 0.8620
root-science 0.9034 0.8070 0.7009 0.7769
root-science-biology 0.9293 0.8829 0.8762 0.8383
root-science-earth 0.8555 0.8165 0.6062 0.8520
root-science-math 0.7805 0.7373 0.6907 0.6150
root-science-socialsciences 0.9282 0.8797 0.8092 0.7020
root-sports 0.9205 0.8657 0.8944 0.9095
root-sports-basketball 0.9214 0.8252 0.8028 0.8229
root-sports-outdoors 0.9674 0.9295 0.9459 0.8814

Table 2.2: The F1-measure for QP-Bayes, with and without feature selec-
tion (FS), and with and without confusion-matrix adjustment (CMA).

to better classification results. It is also possible to use different kinds of
classifiers for each node; for example, we could have used an SVM classifier
for one node and a RIPPER classifier for another. To keep our experiments
manageable, we did not try this otherwise interesting variation.

We now turn to reporting the results of the experimental comparison of the
different versions of QProber, Document Sampling, and Title-based Querying over
the 400 unseen databases in the Controlled set and the databases in the Web
set.

2.4.2 Results over the Controlled Databases

Accuracy for Different τs and τc Thresholds

As explained in Section 2.1.2, Definition 4, the ideal classification of a data-
base depends on two parameters: τs (for specificity) and τc (for coverage).
The values of these parameters are an “editorial decision,” as discussed pre-
viously. To classify a database, both QProber and the Document Sampling tech-
niques need analogous thresholds τes and τec. We ran experiments over the
Controlled databases for different combinations of the τs and τc thresholds,
which result in different ideal classifications for the databases. Intuitively, for
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QP-C4.5
Node CMA=on CMA=off
root 0.9195 0.8509
root-arts 0.9000 0.8693
root-arts-literature 0.7895 0.7774
root-arts-music 0.8755 0.8898
root-computers 0.8620 0.8374
root-computers-programming 0.9226 0.9017
root-computers-software 0.8151 0.8497
root-health 0.8724 0.8580
root-health-diseases 0.9611 0.9374
root-health-fitness 0.7976 0.8251
root-science 0.9322 0.9108
root-science-biology 0.9160 0.9201
root-science-earth 0.5299 0.6198
root-science-math 0.6992 0.6977
root-science-socialsciences 0.9262 0.8898
root-sports 0.9189 0.8864
root-sports-basketball 0.8486 0.8463
root-sports-outdoors 0.8405 0.8510

Table 2.3: The F1-measure for QP-C4.5, with and without confusion-
matrix adjustment (CMA).

QP-SVM
FS=on FS=off

Node CMA=on CMA=off CMA=on CMA=off
root 0.9384 0.8876 0.9170 0.8503
root-arts 0.9186 0.7704 0.9109 0.8373
root-arts-literature 0.6891 0.7543 0.6307 0.7547
root-arts-music 0.9436 0.9031 0.9422 0.9126
root-computers 0.7531 0.7529 0.5575 0.7510
root-computers-programming 0.9193 0.9305 0.9714 0.9375
root-computers-software 0.6347 0.7102 0.6930 0.8587
root-health 0.9149 0.8811 0.9406 0.9001
root-health-diseases 0.9414 0.9159 0.9545 0.9052
root-health-fitness 0.9299 0.9441 0.9165 0.8764
root-science 0.9368 0.8535 0.9377 0.8675
root-science-biology 0.9704 0.9623 0.9567 0.9120
root-science-earth 0.8302 0.8092 0.6579 0.8076
root-science-math 0.7847 0.8088 0.5419 0.8173
root-science-socialsciences 0.7802 0.7312 0.7733 0.7633
root-sports 0.8990 0.7958 0.9330 0.8323
root-sports-basketball 0.9099 0.8466 0.9727 0.9523
root-sports-outdoors 0.9724 0.9205 0.9703 0.9431

Table 2.4: The F1-measure for QP-SVM, with and without feature selec-
tion (FS), and with and without confusion-matrix adjustment (CMA).
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QP-RIPPER
FS=on FS=off

Node CMA=on CMA=off CMA=on CMA=off
root 0.9578 0.8738 0.9274 0.8552
root-arts 0.9521 0.8293 0.9460 0.8763
root-arts-literature 0.8220 0.7872 0.8462 0.8374
root-arts-music 0.9555 0.9386 0.9622 0.9259
root-computers 0.9412 0.8844 0.9376 0.8997
root-computers-programming 0.9701 0.9444 0.9546 0.9368
root-computers-software 0.7923 0.7321 0.8125 0.7694
root-health 0.9801 0.9301 0.9606 0.8956
root-health-diseases 0.9678 0.9156 0.9658 0.9221
root-health-fitness 0.9259 0.8878 0.9136 0.8946
root-science 0.9651 0.8817 0.9634 0.8854
root-science-biology 0.9720 0.9391 0.9717 0.9391
root-science-earth 0.9038 0.8639 0.8905 0.8403
root-science-math 0.9244 0.8806 0.9326 0.8849
root-science-socialsciences 0.9320 0.8932 0.9207 0.8824
root-sports 0.9458 0.8939 0.9447 0.8832
root-sports-basketball 0.9536 0.9107 0.9591 0.9024
root-sports-outdoors 0.9720 0.9357 0.9566 0.9227

Table 2.5: The F1-measure for QP-RIPPER, with and without feature se-
lection (FS), and with and without confusion-matrix adjustment (CMA).

low specificity thresholds τs, the Ideal classification will have the databases
assigned mostly to leaf nodes, while a high specificity threshold might lead
to databases being classified at more general nodes. Similarly, low coverage
thresholds τc produce Ideal classifications where the databases are mostly as-
signed to the leaves, while higher values of τc tend to produce classifications
with the databases assigned to higher level nodes.

For the different versions of QProber and DS, we set τes = τs and τec = τc.
Title-based Querying does not use any such threshold, but instead needs to
decide how many categories K to assign to a given database (Section 2.3.2).
Although, of course, the value of K would be unknown to a classification
technique (unlike the values for thresholds τs and τc), we reveal K to this
technique, as discussed in Section 2.3.2.

Figure 2.6 shows the average value of the F1-measure for varying τes = τs
and for τec = τc = 8, over the 400 unseen databases in the Controlled set. The
results were similar for other values of τec = τc as well. In general, two varia-
tions of QProber, QP-RIPPER and QP-SVM, perform best for a wide range of
τes = τs values, with QP-RIPPER exhibiting a small performance advantage
over QP-SVM. This similar performance is expected since SVMs are known
to perform well with text, so even a rule-based approximation of them can
reach the performance of a pure rule-based classifier like RIPPER. Given that
optimizing rule extraction was not the focus of this thesis, we expect that
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Figure 2.6: The average F1-measure of the different techniques for vary-
ing specificity threshold τes (τec = 8).

QP-SVM can be further optimized. The effectiveness of two variations of DS,
DS-RIPPER and DS-SVM, was also good, although it was slightly inferior to
that of their respective QProber counterparts. This happens because the vari-
ants of DS work over the document sample, while the variants of QProber
work over the complete database. Additionally, as we will see, their cost is
much higher than the QProber versions. The comparison of the other versions
of QProber with their DS analogs reveals that QProber generally performs bet-
ter than DS and that sampling using random queries is inferior to using a
focused, carefully chosen set of queries learned from training examples.

An interesting conclusion from our experiments is that the new version of DS
that retrieves a constant number of documents from each database performs
much better than the old version, DS99. The results for DS99 were consis-
tently worse than those for DS because DS99 usually stops before retrieving
as many documents as DS, and hence it does not manage to create a good
representative profile of the databases.

Finally, the comparison of the other techniques with Title-based Querying (TQ)
reveals that TQ cannot outperform any version of QProber or Document Sam-
pling except for the case when τs = 1. For this setting, even very small estima-
tion errors for QProber and Document Sampling result in errors in the database
classification (e.g., even if QProber estimates 0.9997 specificity for one category
it will not classify the database into that category due to its “low specificity”).

Figure 2.7 shows the average value of the F1-measure for varying τec = τc
with τes = τs = 0.4. (Note that DS operates over a sample of at most 500
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Figure 2.7: The average F1-measure of the different techniques for vary-
ing coverage threshold τec (τes = 0.4).

documents, so it cannot work for τec > 500.) The results were similar for other
values of τes = τs as well. Again, QP-RIPPER and QP-SVM outperform the
other methods and each version of QProber outperforms its DS counterpart.
Title-based Querying in general performs worse than any other technique, and
only outperforms other techniques for high values of threshold τc.

Effect of Depth of Hierarchy on Accuracy

An interesting question is whether classification performance is affected by
the depth of the classification hierarchy. We tested the different methods
against “adjusted” versions of our hierarchy from Section 2.3.1. Specifically,
we first used our original classification scheme with three levels (level=3).
Then we eliminated all the categories of the third level to create a shallower
classification scheme (level=2). We repeated this process again, until our clas-
sification schemes consisted of one single node (level=0). Of course, the perfor-
mance of all the methods at this point was perfect. In Figure 2.8 we compare
the performance of the different methods for τes = τs = 0.4 and τec = τc = 8
(the trends were the same for other threshold combinations as well). The
results confirmed our earlier observations: QProber performs better than the
other techniques for different depths, with only a smooth degradation in per-
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Figure 2.8: The average F1-measure for hierarchies of different depths
(τs = τes = 0.4, τc = τec = 8).

formance for increasing hierarchy depth, suggesting that our approach can
scale to a large number of categories.

Efficiency of the Classification Methods

As we discussed in Section 2.3.3, we compare the number of queries sent to a
database during classification and the number of documents retrieved, since
the other costs involved are comparable for the three methods. The Title-based
Querying technique has a constant cost for each classification: it sends one
query for each category in the classification scheme and retrieves 10 docu-
ments from the database. Thus, this technique sends 72 queries and retrieves
720 documents for our 72-node classification scheme. QProber sends a vari-
able number of queries to the database being classified. The exact number de-
pends on how many times the database will be “pushed” down a subcategory
(Figure 2.4). Our technique does not retrieve any documents from the data-
base. Finally, the Document Sampling methods (DS and DS99) send queries to
the database and retrieve four documents for each query until the termination
condition is met. We list in Figure 2.9 the average number of “interactions” for
varying values of specificity threshold τs = τes with τc = τec = 8. Figure 2.10
shows the average number of “interactions” for varying coverage threshold
τc = τec with τs = τes = 0.4. The results show that both variations of Document
Sampling are the most expensive methods. This happens because Document
Sampling sends a large number of queries to the database that do not match
any documents. Such queries in the Document Sampling method are a large
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Figure 2.9: The average number of “interactions” with the databases as
a function of threshold τes (τec = 8).

source of overhead. On the other hand, when few documents match a specific
query probe from QProber, this reveals that there is a lack of documents that
belong to the category associated with this probe. The results of such queries
are thus effectively used by QProber for the final classification decision.

For low values of the specificity and coverage thresholds τes and τec, Title-
based Querying performs fewer “interactions” than some versions of QProber.
This happens because for these settings the variations of QProber tend to push
databases down the hierarchy more easily, which in turn translates into more
query probes. However, the cheapest variant of QProber, namely QP-SVM, is
always cheaper than Title-based Querying, and it always greatly outperforms it
in terms of accuracy.

Finally, the QProber queries are short, consisting on average of only 1.5 words,
with a maximum of four words. In contrast, the average Title-based Querying
query probe consisted of 18 words, with a maximum of 348 words. Such long
queries may be problematic to process for some hidden-web text databases.

Eliminating Overlap between Query Probes

As discussed in Section 2.2.2, a potential problem with QProber is that its
query probes may overlap with respect to the documents that they match.
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Figure 2.10: The average number of “interactions” with the databases
as a function of threshold τec (τes = 0.4).

A single document might match several query probes for a single category
and would then be “counted” multiple times by QProber. A possible fix
for this problem is to augment each query probe with the negation of all
earlier probes so that only “new” matches are counted each time. (See Sec-
tion 2.2.2 for more details.) Figure 2.11 shows the performance of this overlap-
elimination refinement of QP-RIPPER and QP-SVM against the performance
of their original versions without overlap elimination. Surprisingly, the overlap-
elimination refinement resulted in slightly degraded classification accuracy.
A possible explanation for this phenomenon is that the original versions of
QProber might actually benefit from probe overlap, since “double-counting”
might help compensate for the low recall of some of the query probes. Given
these results, and especially considering that overlap elimination is expensive
(Section 2.2.2), we do not consider this QProber refinement further.

Using Different Document Retrieval Models

Up until now, we have assumed that the text databases support a boolean
model of document retrieval. In other words, given a boolean query (e.g., a
conjunction of terms), each database returns the exact number of documents
that match the query in a boolean sense (e.g., the number of documents in
the database that contain all query terms in a conjunction). We now relax this
assumption and study the accuracy of the classification algorithms over data-
bases that support other document retrieval models. Specifically, we focus on
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Figure 2.11: The average F1-measure for QP-RIPPER and QP-SVM with
and without overlap elimination, as a function of threshold τes (τec = 8).

databases supporting the vector-space retrieval model [SM83], where a query
is simply a list of words, and the query results are a list of documents ordered
by document-query similarity. In the common case in which boolean-query
semantics is supported in conjunction with ranked query results, QProber can
proceed as described so far, with no modification. (The document order in
the results is irrelevant to QProber, since QProber does not actually examine
the documents.) However, if only some form of OR semantics is implicitly
used, then the number of matches returned by a vector-space database for a
query is no longer the number of documents with, say, all query terms, but
usually a higher number. We tested the various classification algorithms over
the Controlled databases, now running a vector-space query interface based
on the SMART 11.0 system [SM97]. Figure 2.12 shows the results that we ob-
tained, together with the corresponding results for boolean query interfaces
that we reported earlier. (The results for the DS variants are the same as the
ones for the boolean interfaces.) As expected, the accuracy of all QProber ver-
sions is worse for the pure vector-space case, but still acceptable especially for
QP-SVM and QP-RIPPER, which dominate with high F1-measure values.
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Figure 2.12: The average F1-measure for the classification techniques
over databases with boolean and vector-space interfaces, and for vary-
ing τes (τec = 8).

2.4.3 Results over the Web Databases

The experiments over the Web databases involved the QProber system, which
was the system that performed best over the Controlled databases. Also, to
keep the overall load on the test sites low, we tested only the QP-RIPPER
version of QProber, which had the best performance over the Controlled da-
tabases. Finally, to keep the training cost low we used the same classifiers
learned using the Controlled set to probe the Web databases (i.e., the probes
were derived from newsgroup articles). Naturally, we expect that the results
reported below could be further improved by training the classifiers over web
data (e.g., downloaded from sites with crawlable contents).

For the experiments over the Controlled set, the classification thresholds τs
and τc of choice were known. In contrast, for the databases in the Web set we
are assuming that their Ideal classification is whatever categories were chosen
(manually) by the InvisibleWeb directory (Section 2.3.1). This classification of
course does not use the τs and τc thresholds in Definition 4, so we cannot use
these parameters as in the Controlled case. However, we assume that Invisi-
bleWeb (and any consistent categorization effort) implicitly uses the notion
of specificity and coverage thresholds for their classification decisions. Hence
we try and learn such thresholds from a fraction of the databases in the Web
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Training Subset Learned τs, τc F1-measure over
Training Subset

Test Subset F1-measure over
Test Subset

W1 ∪W2 0.4, 16 0.69 W3 0.68
W1 ∪W3 0.4, 8 0.68 W2 0.67
W2 ∪W3 0.4, 8 0.71 W1 0.69

Table 2.6: Results of three-fold cross-validation over the Web databases.

set, use these values as the τes and τec thresholds for QProber, and validate the
performance of our technique over the remaining databases in the Web set.

Accuracy for Different τs and τc Thresholds

For the Web set, the Ideal classification for each database is taken from Invis-
ibleWeb. To find the τs and τc that are “implicitly used” by human experts
at InvisibleWeb, we split the Web set into three disjoint sets W1, W2, and W3.
We first use the union of W1 and W2 to learn the values of τs and τc by ex-
haustively exploring a number of combinations and picking the τes and τec
value pair that yielded the best F1-measure. The best values corresponded
to τes = 0.4 and τec = 8, with F1 = 0.69. To validate the robustness of this
conclusion, we tested the performance of QProber over the third subset of the
Web set, W3. For the given values of τes and τec, the F1-measure over the un-
seen W3 set was 0.68, which is very close to the F1-measure over training sets
W1 and W2. Hence, the training to find the τs and τc values was successful,
since the pair of thresholds that we found performs equally well for the In-
visibleWeb categorization of unseen web databases. We performed three-fold
cross-validation [Mit97] for this threshold learning by training on W2 and W3
and testing on W1, and finally training on W1 and W3 and testing on W2. Ta-
ble 2.6 summarizes the results. The results confirm the fact that the values of
τes = 0.4 and τec ≈ 8 are not overfitting the databases in our Web set.

To get a better intuition about the type of errors made by QProber, we checked
the type of misclassifications it performed. For τes = 0.4 and τec = 8, QProber
classified 49 out of the 130 databases perfectly. QProber also classified 15
other databases under a child of the correct node (e.g., “Basketball” rather
than “Sports”), 5 databases under a sibling of the correct node (e.g., “Baseball”
rather than “Basketball”), and 26 databases into the parent of the correct node
(e.g., “Programming” rather than “Java”). QProber also classified 35 databases
under the correct node, but also (incorrectly) under some additional node
(e.g., “Basketball” in addition to “Computers”). In general, the errors were
caused either by some errors in the early stages of the classification (which
result in some extra categories), or by erroneous decisions not to “push down”
a database as much as needed.
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Effect of Depth of Hierarchy on Accuracy

We also tested our method for hierarchical classification schemes of various
depths using τes = 0.4 and τec = 8. The F1-measure was 1, 0.89, 0.79, and 0.69
for hierarchies of depth zero, one, two, and three, respectively. We can see
that the F1-measure drops smoothly as the hierarchy depth increases, leading
us to believe that our method can scale to even larger classification schemes
without significant degradation in accuracy.

Efficiency of the Classification Method

The cost of classification for different combinations of thresholds is shown
in Figure 2.13. As the thresholds increase, the number of queries issued de-
creases, as expected, since it is more difficult to “push” a database down a
subcategory and trigger another probing phase. The cost is generally low:
only a few hundred queries suffice on average to classify a database with
high accuracy. Specifically, for the best setting of thresholds (τs = 0.4 and
τc = 8), QProber sends, on average, only 120 query probes to each database in
the Web set. As we mentioned, the average query probe consists of only 1.5
words.



42 2.4 Experimental Results

1
4


16



64



25
6


10
24




40
96




16
38

4


65
53

6


26
21

44



0

0.

2


0.
4


0.
6


0.
8


1


0


100


200


300


400


500


600


Q
u

er
y 

P
ro

b
es



T
ec


T
es


Figure 2.13: Average number of query probes for the Web databases as
a function of τes and τec.
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2.5 Beyond Hidden-Web Text Databases

Our discussion so far has focused on hidden-web text databases, with non-
crawlable contents. Interestingly, the QProber approach is not restricted to
hidden-web databases and can be applied to classify any text database that
offers a search interface over its documents. In this section, we investigate
whether QProber is an attractive alternative for classifying crawlable text data-
bases.

To examine whether QProber can be beneficial for the classification of data-
bases with crawlable content, we experimentally compared QP-RIPPER against
Crawling-based Classification (CC), a “brute-force” classification approach, us-
ing a set of five databases from the Web set that had crawlable content (Ta-
ble 2.1).

Crawling-based Classification categorizes a crawlable database by simply retriev-
ing its documents using a web crawler and classifying them with a previously-
trained document classifier. Then, CC simply classifies the database according
to the number of documents that it contains in each category, as described in
Section 2.1. This algorithm works as follows to classify a web-accessible data-
base:

1. Train a rule-based document classifier with a set of preclassified docu-
ments.

2. Using a crawler, download all documents from the web database.

3. Classify each retrieved document into a set of categories using the doc-
ument classifier from Step 1.

4. Classify the database using the number of documents classified into
each category from Step 3.

Note that this crawling-based classification approach can be applied only to
web databases that make their content available to “traditional” crawlers (e.g.,
[CGMP98]).

To implement CC, we used the GNU Foundation’s wget tool10 to crawl and
download the contents of each database. We then classify each downloaded
page individually with the same document classifier that QP-RIPPER uses to
generate query probes. Hence, at each stage of the crawling process, we know
the category distribution of the pages already downloaded, from which we
can derive a preliminary classification of the database.

We measured the classification accuracy in terms of precision and recall at dif-
ferent crawling stages, to examine the speed with which the crawling-based
approach reached the correct classification decision. Additionally, we mea-
sured the amount of information that was transmitted over the network, and
the time needed to complete the classification process.

10http://www.gnu.org/software/wget/wget.html

http://www.gnu.org/software/wget/wget.html
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Crawling-based Classification QP-RIPPER
Database Time Files Size Time Queries Size
CNN Sports Illustrated 1325 min 270,202 8 Gb 2 min 112 357 Kb

(-99.8%) (-99.9%)
Tom’s Hardware Guide 32 min 2,928 105 Mb 3 min 292 602 Kb

(-90.6%) (-99.7%)
Johns Hopkins AIDS Service 13 min 1,823 17 Mb 1 min 314 723 Kb

(-92.3%) (-95.7%)
Duke University Rare Books 2 min 3,242 16.5 Mb 3 min 397 1012 Kb

(+50.0%) (-93.8%)
Office of Scientific 210 min 30,749 416 Mb 2 min 174 423 Kb
and Technical Information (-99.0%) (-99.8%)

Table 2.7: The performance of crawling- and query-based classification
for five databases (τes = 0.4, τec = 8).

Table 2.7 shows the evaluation results for QP-RIPPER and CC over five da-
tabases. With the exception of one case (namely, the Duke University Rare
Books database), the time needed to complete the classification process and
the amount of information transmitted over the network were orders of mag-
nitude larger for CC than for QP-RIPPER. Additionally, the crawling-based ap-
proach needed extra local processing power to locally classify the documents.
When the number of retrieved pages is large, this can create a significant local
overhead.

One important advantage of the query-based approach is the fact that its exe-
cution time is largely independent of the size of the database, so this approach
can scale to databases of virtually any size. Additionally, no documents are
retrieved during querying, which speeds up the classification process and
minimizes the required bandwidth for the classification. Finally, the query-
based approach gives a better bound on completion time, since the maximum
number of queries sent to a database depends only on the given classification
scheme and is usually small. In contrast, a crawler might spend substantial
time crawling a large site in order to determine a final classification.

One question that remains to be answered is whether the crawling-based ap-
proach can be improved by requiring only a small portion of a site to be
downloaded. To understand how fast CC can reach the correct classification
of a database, we measured the precision and recall of the classification re-
sults when different fractions of the database are crawled and classified. Our
experiments reveal that often a significant fraction of a database may need to
be retrieved before a correct classification decision can be made. For example,
as can be inferred from Table 2.8, the crawler started crawling parts of the
CNN.SI that were about specific sports (cycling in this case). Consequently,
early in the crawling process, the category distribution was wrongly biased
towards this sport and the site was incorrectly classified under this category,
rather than being classified under the more general “Sports” category. Only
after crawling 70% of all pages did this approach yield the right category for
this database. A similar observation holds for the Duke Rare Book Collection
and the Office of Scientific and Technical Information databases. On the other
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% Crawled 10% 50% 60% 70% 100%
Cycling Cycling Cycling Sports Sports

CNN Sports Multimedia Multimedia
Illustrated P = 0.5 P = 0.5 P = 1.0 P = 1.0 P = 1.0

R = 0.09 R = 0.09 R = 0.09 R = 1.0 R = 1.0
Computers Computers Computers Computers Computers

Tom’s Hardware Rock Rock Rock Rock Rock
Guide P = 0.91 P = 0.91 P = 0.91 P = 0.91 P = 0.91

R = 1.0 R = 1.0 R = 1.0 R = 1.0 R = 1.0
Johns Hopkins AIDS AIDS AIDS AIDS AIDS
AIDS Service P = 1.0 P = 1.0 P = 1.0 P = 1.0 P = 1.0

R = 1.0 R = 1.0 R = 1.0 R = 1.0 R = 1.0
Poetry Poetry Poetry Poetry Poetry
Texts Texts Texts Texts Texts

Duke University Classics
Rare Books History

Photography
P = 0.6 P = 1.0 P = 1.0 P = 1.0 P = 1.0
R = 0.6 R = 0.4 R = 0.4 R = 0.4 R = 0.4

Office of Scientific and Biology Root Biology Biology Biology
Technical Information P = 1.0 P = 0.25 P = 1.0 P = 1.0 P = 1.0

R = 0.33 R = 1.0 R = 0.33 R = 0.33 R = 0.33

Table 2.8: The crawling-based classification and associated precision (P)
and recall (R) for five databases after crawling different fractions of each
database (τes = 0.4, τec = 8).

hand, the classification of the Tom’s Hardware Guide and Johns Hopkins AIDS
Service databases was remarkably accurate in the crawling process and con-
verged to the correct result very fast. This happened because these two sites
contain documents that are relatively homogeneous in topic. Hence, even
the first few pages retrieved were good representatives of the database as a
whole.

In summary, the crawling-based approach is prone to producing wrong classi-
fication decisions at early stages of the crawling. A crawling-based approach
could produce reasonable classification results early on only if crawling could
somehow guarantee that the documents crawled first reflected the real topic
distribution in the entire database. However, currently no crawler can per-
form such a traversal and it is doubtful that any will ever be able to do so
in a robust way, since to build such a crawler presupposes knowledge of the
distribution of documents at the sites. In contrast, QP-RIPPER manages to de-
tect the correct classification of all these databases using only a fraction of the
time and data required for the crawling-based approach. Hence, these exper-
imental results suggest that the query-based approach is a better alternative
for the classification of crawlable text databases.
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2.6 Further Discussion

QProber relies on databases returning the number of matches for each query
probe. If a database does not return this number, then QProber cannot be used
in an efficient way. (It might still be possible to count the number of matches
by inspecting all result pages. However, this approach will be inefficient for
databases that return a large number of results.) Document Sampling can be
used as an alternative to classify such databases. Also, QProber might not
work well when the number of matches reported by a database is bounded
by an upper threshold (for example, some databases might indicate “more
than 1,000 matches for this query” rather than listing the exact number of
matches). The number of databases that truncated the number of matches in
our Web set was small (less than five) so we cannot derive conclusive results
about the accuracy of QProber in this relatively rare scenario.

One potential problem for any query-based sampling technique is that some
databases might use the robots.txt file [Kos02] to prohibit automatic query-
ing. From the 130 web databases in our Web set, 62 had a robots.txt file
(restricting access to at least part of the site), out of which only 18 prohibited
crawling under the directory that hosted the search interface. It is unclear if
this restriction was intended to prohibit automatic querying, or just to prevent
web crawlers from crawling parts of the web site that are generated dynami-
cally. If automatic querying is restricted at a database, then any method based
on query sampling will fail to work with such a database.

Also, another potential problem for QProber that is a subject of future work is
“spamming”: malicious databases might report incorrect numbers of matches
for the probes. This would, of course, result in erroneous classifications. We
believe that a “lie detection” mechanism can be used to identify databases
that return an inconsistent or inflated number of matches. For example, we
could send queries such as [a AND b], [a AND NOT b], and [b AND NOT a]
and keep track of the number of matches for each one of them. Then, we can
send the queries [a] and [b]. By comparing the number of matches for the two
sets of queries we can identify inconsistencies. To detect inflated numbers of
matches, we could use the following algorithm. Start by sending a random
keyword as a probe. If it returns a large number of matches, add some extra
keywords to the probe, until the returned number of matches is small. Then
download the returned articles to check that they are indeed different and
that they contain the required keywords. By performing this test, we can
verify that the database returns legitimate results. We believe that variations
of the (admittedly simplistic) strategies above might help QProber identify
and handle “suspicious” databases.

Finally, a step that would completely automate the classification process is to
eliminate the need for a human to construct the simple wrapper for each da-
tabase to classify. This step can be eliminated by automatically learning how
to parse the query result pages. [PDEW97] has studied how to automatically
characterize and understand web forms. Our technique is particularly well
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suited for this automation, since it needs only very simple information from
result pages (i.e., the number of matches for a query). Furthermore, the pat-
terns used by web search engines to report the number of matches for queries
are quite similar. For example, one representative pattern is the appearance of
the word “of ” before reporting the actual number of matches for a query (e.g.,
“30 out of 1024 matches displayed”). 76 of the 130 web databases in the Web
set use this pattern to report the number of matches. Another common pat-
tern is the appearance of the word “found” near the number of matches (e.g.,
“1349 matches found”). This pattern appears in 52 cases. Similar patterns with
the words “matches,” “matching,” “matched,” etc. match the results page of 59
databases, while 18 databases use the word “results.” Similarly, the syntax of
boolean queries varies little across databases (e.g., ibm AND computer vs. +ibm
+computer), which makes the query translation component of our simple wrap-
per another candidate for automation. Based on this anecdotal information,
it seems realistic to envision a completely automatic classification system.

2.7 Conclusions

In this chapter, we introduced a technique for hierarchically classifying text
databases. We provided a formal definition of our classification task, together
with a scalable classification algorithm that adaptively issues query probes
to databases. This algorithm involves learning document classifiers, which
serve as the foundation for building query probes. Turning a rule-based clas-
sifier into query probes is straightforward. For numerically parameterized
classifiers that are not rule-based, we described an algorithm for extracting
rules that can then be easily turned into query probes. We also presented
a method for adjusting the number of matches returned by databases in re-
sponse to query probes to improve categorization accuracy and compensate
for classifier errors. Finally, we showed how to make classification assign-
ments based on the adjusted query-match count information. Our technique
is efficient and scalable, and does not require retrieving any documents from
the databases. Our extensive experiments show that our method is both more
accurate and more efficient than alternative methods for database classifica-
tion. A demo of the classification system [IGS01a] is publicly available for
experimentation at http://qprober.cs.columbia.edu.

http://qprober.cs.columbia.edu
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Chapter 3

Constructing Database
Content Summaries

In Chapter 2, we presented an algorithm for automatically classifying hidden-
web text databases into Yahoo!-like directories. Users can browse through
the classification scheme to locate databases of interest. Alternatively, users
can access the content of text databases via metasearchers, which can be used to
query multiple databases simultaneously from a single query interface. In this
chapter, we focus on how to derive high-quality summaries of the contents
of text databases. As we will see, these summaries are critical for building
efficient metasearchers.

A metasearcher performs three main tasks. After receiving a query, it finds
the best databases to evaluate the query (database selection), it translates the
query in a suitable form for each database (query translation), and finally it
retrieves and merges the results from the different databases (result merging)
and returns them to the user. The database selection component of a meta-
searcher is of crucial importance in terms of both query processing efficiency
and effectiveness.

Database selection algorithms are traditionally based on statistics that char-
acterize each database’s contents [GGMT99, MLY+98, XC98, YL97]. These
statistics, which we will refer to as content summaries, usually include the doc-
ument frequencies of the words that appear in the database, plus perhaps other
simple statistics. These summaries provide sufficient information to the da-
tabase selection component of a metasearcher to decide which databases are
the most promising to evaluate a given query.

Constructing the content summary of a text database is a simple task if the full
contents of the database are available (e.g., via crawling). However, this task
is challenging for hidden-web text databases, whose contents are only avail-
able via querying. In this case, a metasearcher could rely on the database to
supply the summary (e.g., by following a protocol like STARTS [GCGMP97],
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or possibly using Semantic Web [BLHL01] tags in the future). Unfortunately,
many web-accessible text databases are completely autonomous and do not
report any detailed metadata about their contents to facilitate metasearching.
To handle such databases, a metasearcher could rely on manually generated
descriptions of the database contents. Such an approach would not scale to
the thousands of text databases available on the web [Bri00], and would likely
not produce the good-quality, fine-grained content summaries required by
database selection algorithms.

In this chapter, we present a technique to automate the extraction of high-
quality content summaries from hidden-web text databases. Our technique
constructs these summaries from a biased sample of the documents in a data-
base, extracted by adaptively probing the database using the topically focused
queries sent to the database during classification (Chapter 2). As we dis-
cussed, our algorithm selects what queries to issue based in part on the results
of the earlier queries, thus focusing on the topics that are most representative
of the database in question. Our technique resembles biased sampling over
numeric databases, which focuses the sampling effort on the “densest” areas.
We show that this principle is also beneficial for the text-database world. In-
terestingly, our technique moves beyond the document sample and attempts
to include in the content summary of a database accurate estimates of the ac-
tual document frequency of the words in the database. For this, our technique
exploits well studied statistical properties of text collections.

Unfortunately, all efficient techniques for building content summaries via doc-
ument sampling suffer from the “sparse data” problem: many words in any
text database tend to occur in relatively few documents, so any document
sample of reasonably small size will necessarily miss many words that occur
in the associated database a small number of times. To alleviate this sparse-
data problem, we exploit the observation that incomplete content summaries
of topically related databases can be used to complement each other. Based
on this observation, we show how to use “shrinkage,” a statistical technique
for improving parameter estimation in the face of sparse data, to enhance the
database content summaries with category-specific words. As we will see,
the shrinkage-enhanced summaries characterize the database contents better
than their “unshrunk” counterparts do. In Chapter 4, we will show that the
shrinkage-enhanced summaries can lead to improved database selection per-
formance.

In brief, the main contributions presented in this chapter are:

• A technique to sample text databases that results in higher quality da-
tabase content summaries than those produced by the state-of-the-art
alternatives.

• A technique to estimate the absolute document frequencies of the words
in the content summaries.

• A technique to build high-quality database content summaries using
shrinkage.
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CANCERLIT
148,944 documents
Word df
breast 121,134
cancer 91,688
. . . . . .

CNN.fn
44,730 documents
Word df
breast 124
cancer 44
. . . . . .

Table 3.1: A fragment of the content summaries of two databases.

• A thorough, extensive experimental evaluation of the presented algo-
rithms.

The rest of the chapter is organized as follows. Section 3.1 gives the necessary
background. Section 3.2 outlines our new technique for producing content
summaries of text databases, including accurate word-frequency information
for the databases. Then, Section 3.3 presents our frequency estimation algo-
rithm. Section 3.4 presents our shrinkage-based summary construction al-
gorithm. Section 3.5 describes the settings for the experimental evaluation
of Section 3.6. Finally, Section 3.7 concludes this chapter. The bulk of this
chapter has appeared in [IG02, IG04].

3.1 Background

In this section, we provide the required background as well as describe re-
lated efforts. Section 3.1.1 briefly summarizes how existing database selection
algorithms work, stressing their reliance on database “content summaries.”
Then, Section 3.1.2 describes the use of “uniform” query probing for extrac-
tion of content summaries from text databases and identifies the limitations
of this technique.

3.1.1 Database Selection Algorithms

Database selection is an important task in the metasearching process, since it
has a critical impact on the efficiency and effectiveness of query processing
over multiple text databases. We now briefly outline how typical database
selection algorithms work and how they depend on database content sum-
maries to make decisions.

A database selection algorithm attempts to find the best text databases to
evaluate a given query, based on information about the database contents.
Usually this information includes the number of different documents that
contain each word, to which we refer as the document frequency of the word,
plus perhaps some other simple related statistics [GCGMP97, MLY+98, XC98],
such as the number of documents stored in the database.
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Definition 12: The content summary S(D) of a database D consists of:

• The actual number of documents in D, |D|, and

• For each word w, the number d f (w) of documents in D that include w.

For notational convenience, we also use p(w|D) = d f (w)
|D| to denote the fraction of D

documents that include w.

Table 3.1 shows a small fraction of what the content summaries for two real
text databases might look like. For example, the content summary for the
CNN.fn database, a database with articles about finance, indicates that 44 out
of the 44,730 documents in this database contain the word “cancer.” Given
these summaries, a database selection algorithm estimates how relevant each
database is for a given query (e.g., in terms of the number of matches that
each database is expected to produce for the query):

Example 8: bGlOSS [GGMT99] is a simple database selection algorithm that as-
sumes that query words are independently distributed over database documents to
estimate the number of documents that match a given query. So, bGlOSS estimates

that query [breast AND cancer] will match |D| · df(breast)
|D| · df(cancer)

|D|
∼= 74, 569

documents in database CANCERLIT, where |D| is the number of documents in the
CANCERLIT database, and d f (·) is the number of documents that contain a given
word. Similarly, bGlOSS estimates that a negligible number of documents will match
the given query in the other database of Table 3.1.

bGlOSS is a simple example of a large family of database selection algorithms
that rely on content summaries such as those in Table 3.1. Furthermore, da-
tabase selection algorithms expect content summaries to be accurate and up
to date. The most desirable scenario is when each database exports these
content summaries directly (e.g., via a protocol such as STARTS [GCGMP97]).
Unfortunately, no protocol is widely adopted for web-accessible databases,
and there is little hope that such a protocol will emerge soon. Hence, other
solutions are needed to automate the construction of content summaries from
databases that cannot or are not willing to export such information. We re-
view one such approach next.

3.1.2 Uniform Probing for Content Summary Construction

As discussed above, we cannot extract perfect content summaries for hidden-
web text databases whose contents are not crawlable. Unless these databases
directly provide their content summaries, we will need to approximate these
summaries via query probing.
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When we do not have access to the complete content summary S(D) of a
database D, we can only hope to generate a good approximation and use it
for database selection purposes.

Definition 13: The approximate content summary Ŝ(D) of a database D consists
of:

• An estimate |̂D| of the number of documents in D, and

• For each word w, an estimate d̂ f (w) of d f (w).

Using the values |̂D| and d̂ f (w), we can define an approximation p̂(w|D) of p(w|D)

as p̂(w|D) = d̂ f (w)
|̂D| .

Callan et al. [CCD99, CC01] presented pioneering work on automatic extrac-
tion of document frequency statistics from “uncooperative” text databases
that do not export such metadata. Their algorithm extracts a document sam-
ple from a given database D and computes the frequency of each observed
word w in the sample, sf (w):

1. Start with an empty content summary where sf (w) = 0 for each word
w, and a general (i.e., not specific to D), comprehensive word dictionary.

2. Pick a word (see below) and send it as a query to database D.

3. Retrieve the top-k documents returned.

4. If the number of retrieved documents exceeds a prespecified threshold,
stop. Otherwise continue the sampling process by returning to Step 2.

Callan et al. suggested using k = 4 for Step 3 and that 300 documents are
sufficient (Step 4) to create a representative content summary of the database.
Also they describe two main versions of this algorithm that differ in how Step
2 is executed. The algorithm QueryBasedSampling-OtherResource (QBS-Ord for
short) picks a random word from the dictionary for Step 2. In contrast, the
algorithm QueryBasedSampling-LearnedResource (QBS-Lrd for short) selects the
next query from among the words that have been already discovered during
sampling. QBS-Ord constructs better profiles, but is more expensive than
QBS-Lrd [CC01]. Other variations of this algorithm perform worse than QBS-
Ord and QBS-Lrd, or have only marginal improvements in effectiveness at the
expense of probing cost.

These algorithms compute the sample document frequencies sf (w) for each
word w that appeared in a retrieved document, and set d̂ f (w) = sf (w). These
frequencies range between one and the number of retrieved documents in the
sample. In other words, the actual document frequency df (w) for each word
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w in the database is not revealed by this process. Hence, two databases with
the same focus (e.g., two medical databases) but differing significantly in size
might be assigned similar content summaries. Also, QBS-Ord tends to pro-
duce inefficient executions in which it repeatedly issues queries to databases
that produce no matches. According to Zipf’s law [Zip49], most of the words
in a collection occur very few times. Hence, a word that is randomly picked
from a dictionary (which hopefully contains a superset of the words in the
database), is likely not to occur in any document of an arbitrary database. Re-
gardless of these shortcomings, the QBS-Ord and QBS-Lrd techniques extract
content summaries from uncooperative text databases that otherwise could
not be evaluated during a metasearcher’s database selection step.

Next, we introduce a novel technique for constructing content summaries with
absolute frequencies that are highly accurate and efficient to build. Our new
technique builds on the text-database classification algorithm from Chapter 2.
Interestingly, the classification algorithm provides a way to focus on the topics
that are most representative of a given database’s contents, resulting in turn
in accurate and efficiently extracted content summaries.

3.2 Focused Probing for Content Summary Construc-
tion

We now describe our algorithm for constructing content summaries for a text
database. Our algorithm is based on the classification algorithm from Chap-
ter 2 and exploits a topic hierarchy to adaptively send focused probes to the
database. These queries tend to efficiently produce a document sample that is
topically representative of the database contents, which leads to highly accu-
rate content summaries. Furthermore, our algorithm classifies the databases
along the way. In Section 3.4, we will show that we can exploit categorization
to improve further the quality of the generated content summaries.

Our content summary construction algorithm is based on the classification
algorithm (Figure 2.4) from Chapter 2. The main difference is that now we
exploit the focused probing to retrieve a document sample. The algorithm is
shown in Figure 3.1. We have enclosed in boxes the portions directly relevant
to content-summary extraction. Specifically, for each query probe we retrieve
k documents from the database in addition to the number of matches that
the probe generates (box β in Figure 3.1). Also, we record two sets of word
frequencies based on the probe results and extracted documents (boxes β and
γ):

1. df (w): the actual number of documents in the database that contain
word w. The algorithm knows this number only if [w] is a single-word
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GetContentSummary(Category C, Database D)

α: 〈sf , df , Classif〉 = 〈∅, ∅, ∅〉
if C is a leaf node then return 〈sf , df , {C}〉
Probe database D with the query probes derived from the classifier
for the subcategories of C

β:

newdocs = ∅
foreach query probe q

newdocs = newdocs ∪ {top-k documents returned for q}
if q consists of a single word w then df (w) = #matches returned for q

foreach word w in newdocs
sf (w) = #documents in newdocs that contain w

Calculate ECoverage from the number of matches for the probes
ECoverage(D) = M−1×ECoverage(D) // Confusion Matrix Adjustment
Calculate the ESpecificity vector, using ECoverage(D) and ESpecificity(D, C)
foreach subcategory Ci of C

if ESpecificity(Ci) ≥ τes AND ECoverage(Ci) ≥ τec then

γ: 〈sf ’, df ’, Classif’〉 = GetContentSummary(Ci , D)
Merge 〈sf ’, df ’〉 into 〈sf , df 〉
Classif = Classif∪ Classif’

return 〈sf , df , Classif〉

Figure 3.1: Generalizing the classification algorithm from Figure 2.4 to
generate a content summary for a database using focused query prob-
ing.

query probe that was issued to the database1.

2. sf (w): the number of documents in the extracted sample that contain
word w.

The basic structure of the probing algorithm is as follows. We explore (and
send query probes for) only those categories with sufficient specificity and
coverage, as determined by the τes and τec thresholds (Chapter 2). As a result,
this algorithm categorizes the databases into the classification scheme during
probing. We will exploit this categorization to improve the quality of the
generated content summaries in Section 3.4.

Figure 3.2 illustrates how our algorithm works for the CNN Sports Illustrated
database, a database with articles about sports, and for a hierarchical scheme
with four categories under the root node: “Sports,” “Health,” “Computers,”
and “Science.” We pick specificity and coverage thresholds τes = 0.5 and
τec = 100, respectively. The algorithm starts by issuing the query probes as-
sociated with each of the four categories. The “Sports” probes generate many
matches (e.g., query [baseball] matches 24,520 documents). In contrast, the
probes for the other sibling categories (e.g., [metallurgy] for category “Science”)
generate just a few or no matches. The ECoverage of category “Sports” is the

1The number of matches reported by a database for a single-word query [w] might differ
slightly from df (w), for example, if the database applies stemming [SM83] to query words so
that a query [computers] also matches documents with word “computer.”
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Figure 3.2: Querying the CNN Sports Illustrated database with focused
probes.

sum of the number of matches for its probes, or 32,050. The ESpecificity of cat-
egory “Sports” is the fraction of matches that correspond to “Sports” probes,
or 0.967. Hence, “Sports” satisfies the ESpecificity and ECoverage criteria (recall
that τes = 0.5 and τec = 100) and is further explored to the next level of the hi-
erarchy. In contrast, “Health,” “Computers,” and “Science” are not considered
further. The benefit of this pruning of the probe space is two-fold: First, we
improve the efficiency of the probing process by giving attention to the topi-
cal focus (or foci) of the database. (Out-of-focus probes would tend to return
few or no matches.) Second, we avoid retrieving spurious matches and focus
on documents that are better representatives of the database.

During probing, our algorithm retrieves the top-k documents returned by
each query (box β in Figure 3.1). For each word w in a retrieved document,
the algorithm computes sf (w) by measuring the number of documents in the
sample, extracted in a probing round, that contain w. If a word w appears in
document samples retrieved during later phases of the algorithm for deeper
levels of the hierarchy, then all sf (w) values are added together (“merge”
step in box γ). Similarly, during probing the algorithm keeps track of the
number of matches produced by each single-word query [w]. As discussed,
the number of matches for such a query is (a close approximation to) the df (w)
frequency (i.e., the number of documents in the database with word w). These
df (·) frequencies are crucial to estimate the absolute document frequencies of
all words that appear in the document sample extracted, as discussed next.
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Figure 3.3: Estimating unknown df values.

3.3 Estimating Absolute Document Frequencies

The QBS-Ord and QBS-Lrd techniques return the frequency of the words in
the document sample (i.e., the sf (·) frequencies), with no absolute frequency
information. We now show how we can exploit the df (·) and sf (·) document
frequencies that we extract from a database to build a content summary for
the database with accurate absolute document frequencies.

Figure 3.3 illustrates the basic intuition behind our technique. After probing
the CANCERLIT database using the algorithm in Figure 3.1, we rank all words
in the extracted documents according to their sf (·) frequency. For example,

“cancer” has the highest sf (·) value and “hepatitis” the lowest such value, in
Figure 3.3. The sf (·) value of each word is noted by an associated vertical
bar. Also, the figure shows the df (·) frequency of each word that appeared
as a single-word query. For example, df (hepatitis) = 20, 000, because query
probe [hepatitis] returned 20,000 matches. Note that the df value of some
words (e.g., “stomach”) is unknown. These words are in documents retrieved
during probing, but did not appear as single-word probes. Finally, note from
the figure that sf(hepatitis) ≈ sf(stomach), and so we might want to estimate
df (stomach) to be close to the (known) value of df (hepatitis).

To specify how to “propagate” the known df frequencies to “nearby” words
with similar sf frequencies, we exploit well known laws on the distribution of
words over text documents. Zipf [Zip49] was the first to observe that word-
frequency distributions follow a power law, an observation that was later
refined by Mandelbrot [Man88]. Mandelbrot identified a relationship between
the rank r and the frequency f of a word in a text database, f = P(r + p)B,
where P, B, and p are database-specific parameters (P > 0, B < 0, p ≥ 0).
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This formula indicates that the most frequent word in a collection (i.e., the
word with rank r = 1) will tend to appear in about P(1 + p)B documents,
while, say, the tenth most frequent word will appear in just about P(10 + p)B

documents. Therefore, given Mandelbrot’s formula for the database and the
word ranking, we can estimate the frequency of each word.

Our technique relies on Mandelbrot’s formula to define the content summary
of a database and consists of two steps:

1. During probing, exploit the sf (·) frequencies derived during sampling
to estimate the rank-frequency distribution of the words over the entire
database.

2. After probing, exploit the df (·) frequencies obtained from one-word
query probes to estimate the rank of these words in the actual database;
then, estimate the document frequencies of all words by “propagating”
the known rank and document frequencies to “nearby” words w for
which we only know sf (w) but not df (w).

Estimating the Word Rank-Frequency Distribution: The first part of our
technique estimates the parameters P and B (of a slightly simplified version2)
of Mandelbrot’s formula for the database. To do this, we examine how the
parameters of Mandelbrot’s formula change for different sample sizes. We
observed that log(P) and B generally tend to increase logarithmically with
the sample size |S|. Specifically:

log(P) = P1 log(|S|) + P2 (3.1a)

B = B1 log(|S|) + B2 (3.1b)

where P1, P2, B1, and B2 are database-specific constants, independent of the
sample size.

Based on the above empirical observations, we proceed as follows for a da-
tabase D. At different points during the document sampling process, we
calculate P and B. After sampling, we use regression to estimate the values of
P1, P2, B1, and B2. We also estimate the size of database D using the “sample-
resample” method presented in [SC03]. Finally, we compute the values of
P and B for the database by substituting the estimated |D| for |S| in Equa-
tions 3.1a and 3.1b. At this point, we have a description of the frequency-rank
distribution for the actual database.

Estimating Document Frequencies: Given the parameters of Mandelbrot’s
formula, the actual document frequency df (w) of each word w can be derived
from its rank in the database. For high-frequency words, the rank in the

2For numerical stability, we define f = PrB, which allows us to use linear regression in the
log-log space to estimate parameters P and B.
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sample is usually a good approximation of the rank in the database. Unfortu-
nately, this is rarely the case for low-frequency words, for which we rely on
the observation that df (·) frequencies derived from one-word query probes
can help estimate the rank and df (·) frequency of all words in the database.
Our rank and frequency estimation algorithm works as follows:

1. Sort words in descending order of their sf (·) frequencies to determine
the sample rank sr(wi) of each word wi.

2. For each word w in a one-word query probe (d f (w) is known), use

Mandelbrot’s formula and compute the database rank ar(w) =
(

d f (w)
P

) 1
B.

3. For each word w not in a one-word query probe (d f (w) is unknown):

(a) Find two words w1 and w2 with known df and compute their ranks
in the sample (sr(w1), sr(w2)) and in the database (ar(w1), ar(w2)).3

(b) Use interpolation in the log-log space to compute the database rank
ar(w).4

(c) Use Mandelbrot’s formula to compute d̂ f (w) = P · ar(w)B, where
ar(w) is the rank of word w as computed in the previous step.

Using the procedure above, we can estimate the df frequency of each word
that appears in the sample.

Example 9: Consider the medical database CANCERLIT and Figure 3.3. We know
that df(hepatitis) = 20, 000 and df(liver) = 140, 000, since the respective one-word
query probes reported as many matches in each case. Furthermore, the rank of the
two words in the sample is 5 and 10 respectively. While we know that the rank
of the word “kidneys” is 8, we do not know df(kidneys) because [kidneys] was
not a query probe. However, the known values of df(hepatitis) and df(liver) can
help us estimate the rank of “kidneys” in the database and, in turn, the df(kidneys)
frequency. For the CANCERLIT database, we estimate that P = 6 · 106 and B =
−1.15. Thus, we estimate that “liver” is the fifth most frequent word in the database
(i.e., ar(liver) = 5), while “hepatitis” is ranked number 20 (i.e., ar(hepatitis) = 20).
Therefore, 14 words in the database are ranked between “liver” and “hepatitis”,
while in the sample there are only 4 such words. By exploiting this observation
and by interpolation, we estimate that “kidneys” (with rank 8 in the sample) is the
14th most frequent word in the database. Then, using the rank information with
Mandelbrot’s formula, we compute d̂ f (kidneys) = 6 · 106 · 14−1.15 ∼= 30, 000.

During sampling, we also send to the database query probes that consist
of more than one word. (Recall that our query probes are derived from an
underlying, automatically learned document classifier.) We do not exploit

3It is preferable, but not essential, to pick w1 and w2 such that sr(w1) < sr(w) < sr(w2).
4The exact formula is ar(w) = exp( log(ar(w2))·log(sr(w)/sr(w1))+ar(w1)·log(sr(w2)/sr(w))

log(sr(w1)/sr(w2)) ).
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multi-word queries for determining df frequencies of their words, since the
number of matches returned by a boolean-AND multi-word query is only a
lower bound on the df frequency of each intervening word. However, the av-
erage length of the query probes that we generate is small (less than 1.5 words
in our experiments), and their median length is one. Hence, the majority of
the query probes provide us with df frequencies that we can exploit.

Finally, a potential problem with the current algorithm is that it relies on the
database reporting a value for the number of matches for an one-word query
[w] that is equal (or at least close) to the value of df (w). Sometimes, however,
these two values might differ (e.g., if a database applies stemming to query
words). In this case, frequency estimates might not be reliable. However, it
is rather easy to detect such configurations [MYL99] and adapt the frequency
estimation algorithm properly. For example, if we detect that a database uses
stemming, we might decide to compute the frequency and rank of each word
in the sample after the application of stemming and adjust the algorithms
accordingly.

In summary, we have presented a novel technique for estimating the absolute
document frequency of the words in a database. As we will see, this technique
produces relatively accurate frequency estimates for the words in a document
sample of the database. However, the database words that are not in the
sample documents in the first place are ignored and not part of the resulting
content summary. Unfortunately, any document sample of reasonable size
will necessarily miss many words that occur in the associated database only
a small number of times. The absence of these words from the content sum-
maries can negatively affect the performance of database selection algorithms
for queries that mention such words. To alleviate this sparse-data problem,
we exploit the observation that incomplete content summaries of topically
related databases can be used to complement each other, as discussed next.

3.4 Improving Content Summaries using Shrink-
age

As argued above, content summaries derived from relatively small document
samples are generally incomplete. In this section, we show how we can ex-
ploit database category information to improve the quality of the database
summaries. Specifically, Section 3.4.1 presents an overview of our general
approach, which builds on the shrinkage ideas from document classifica-
tion [MRMN98], while Section 3.4.2 explains the details of our method.

3.4.1 Overview of our Approach

In Sections 3.1 and 3.2 we presented sampling-based techniques for build-
ing content summaries from hidden-web text databases. As discussed, low-
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frequency words tend to be absent from those summaries. Additionally, other
words might be disproportionately represented in the document samples.
One way to alleviate these problems is to increase the sample size. Unfor-
tunately, this solution might be impractical, since it would involve extensive
querying of the (remote) databases. Even more importantly, increases in doc-
ument sample size do not tend to result in comparable improvements in con-
tent summary quality [CC01]. An interesting challenge is then to improve the
quality of the approximate content summaries without necessarily increasing
the document sample size.

This challenge has a counterpart in the problem of hierarchical document
classification. Document classifiers rely on training data to associate words
with categories. Often, only limited training data is available, which might
lead to poor classifiers. Classifier quality can be increased with more training
data, but creating large numbers of training examples might be prohibitively
expensive. As a less expensive alternative, McCallum et al. [MRMN98] sug-
gested “sharing” training data across related topic categories. Specifically,
their shrinkage approach compensates for sparse training data for a category
by using training examples for more general categories. For example, the
training documents for the “Heart” category can be augmented with those
from the more general “Health” category. The intuition behind this approach
is that the word distribution in “Health” documents is hopefully related to
the word distribution in the “Heart” documents.

We can apply the same shrinkage principle to our problem, which requires
that databases be categorized into a topic hierarchy. This categorization might
be an existing one (e.g., if the databases are classified under Open Directory5

or InvisibleWeb). Alternatively, databases can be classified automatically us-
ing our classification algorithm from Chapter 2. Regardless of how databases
are categorized, we can exploit this categorization to improve content sum-
mary coverage. The key intuition behind the use of shrinkage in this context
is that databases under similar topics tend to have related content summaries
(we validate this intuition experimentally in Section 3.6). Hence, we can use
the approximate content summaries for similarly classified databases to com-
plement each other, as illustrated in the following example.

Example 10: Figure 3.4 shows a fraction of a hierarchical classification scheme with
two text databases D1 and D2 classified under the category “Heart,” and one text
database D3 classified under the (higher-level) category “Health.” Assume that the
approximate content summary of D1 does not contain the word “hypertension,”
but that this word appears in many documents in D1. (“Hypertension” might
not have appeared in any of the documents sampled to build Ŝ(D1).) In contrast,
“hypertension” appears in a relatively large fraction of D2 documents as reported
in the content summary of D2, a database also classified under the “Heart” category.
Then, by “shrinking” p̂(hypertension|D1) towards the value of p̂(hypertension|D2),
we can capture more closely the actual (and unknown) value of p(hypertension|D1).

5http://www.dmoz.org
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Figure 3.4: A fraction of a classification hierarchy and content summary
statistics for word “hypertension.”

The new, “shrunk” value is in effect exploiting the documents sampled from both D1
and D2.

We expect databases under the same category to have similar content sum-
maries. Furthermore, even databases classified under relatively general cate-
gories can help improve the approximate content summary of a more specific
database. Consider database D3, classified under “Health” in the example in
Figure 3.4. Ŝ(D3) can help complement the content summary approximation
of databases D1 and D2, which are classified under a subcategory of “Health,”
namely “Heart.” Database D3, however, is a more general database that con-
tains documents in topics other than heart-related. Hence, the influence of
Ŝ(D3) on Ŝ(D1) should perhaps be smaller than that of, say, Ŝ(D2). In gen-
eral, and just as for document classification [MRMN98], each category level
might be assigned a different “weight” during shrinkage. We discuss this and
other specific aspects of our technique next.

3.4.2 Using Shrinkage over a Topic Hierarchy

We now define more formally how we can use shrinkage for content summary
construction. For this, we first extend the notion of content summaries to the
categories of a classification scheme.

Creating Category Content Summaries

The content summary of a category C summarizes the contents of the data-
bases classified under C.

Definition 14: Consider a category C and the set db(C) of databases classified
under C. The approximate content summary Ŝ(C) of category C contains, for
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each word w, an estimate p̂(w|C) of p(w|C), where p(w|C) is the probability that
a randomly selected document from a database in db(C) contains the word w. The
p̂(w|C) estimates in Ŝ(C) are derived from the content summaries of databases in
db(C) as6:

p̂(w|C) =
∑D∈db(C) p̂(w|D) · |̂D|

∑D∈db(C) |̂D|
(3.2)

Creating Shrunk Content Summaries

Section 3.4.1 argued that mixing information from content summaries of topi-
cally related databases may lead to more complete approximate content sum-
maries. We now formally describe how to use shrinkage for this purpose. In
essence, we create a new content summary for each database D by “shrink-
ing” the approximate content summary of D, Ŝ(D), so that it is “closer” to
the content summaries S(Ci) of each category Ci under which D is classified.

Definition 15: Consider a database D classified under categories C1, . . . , Cm of a
hierarchical classification scheme, with Ci = Parent(Ci+1) for i = 1, . . . , m− 1. Let
C0 be a dummy category whose content summary Ŝ(C0) contains the same estimate
p̂(w|C0) for every word w. Then, the shrunk content summary R̂(D) of database
D consists of:

• An estimate |̂D| of the number of documents in D, and

• For each word w, a shrinkage-based estimate p̂R(w|D) of p(w|D), defined as:

p̂R(w|D) = λm+1 · p̂(w|D) +
m

∑
i=0

λi · p̂(w|Ci) (3.3)

for a choice of λi values such that ∑m+1
i=0 λi = 1 (see below).

As described so far, the p̂(w|Ci) values in the Ŝ(Ci) content summaries are
not independent of each other: since Ci = Parent(Ci+1), all the databases
under Ci+1 are also used to compute Ŝ(Ci) (Definition 14). To avoid this
overlap, before estimating R̂(D) we subtract from Ŝ(Ci) all the data used to
construct Ŝ(Ci+1). Also note that a simple version of Equation 3.3 is used
for database selection based on language models [SJCO02]. Language model
database selection “smoothes” the p̂(w|D) probabilities with the probability
p̂(w|G) for a “global” category G. Our technique extends this principle and
does multilevel smoothing of p̂(w|D), using the hierarchical classification of
D. We now describe how to compute the λi weights used in Equation 3.3.

6An alternative is to define p̂(w|C) =
∑D∈db(C) p̂(w|D)

|db(C)| , which “weights” each database equally,
regardless of its size. We implemented this alternative and obtained results that were virtually
identical to those for Equation 3.2.
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Calculating Category Mixture Weights

We define the λi mixture weights from Equation 3.3 so as to make the shrunk
content summaries R̂(D) for each database D as “similar” as possible to
both the starting summary Ŝ(D) and the summary Ŝ(Ci) of each category
Ci under which D is classified. Specifically, we use expectation maximization
(EM) [MRMN98] to calculate the λi weights, using the algorithm in Figure 3.5.
(This is a simple version of the EM algorithm from [DLR77].)

The “Expectation” step calculates the “likelihood” that content summary R̂(D)
corresponds to each category. The “Maximization” step weights the λis to
maximize the total likelihood across all categories. The result of the algo-
rithm is the shrunk content summary R̂(D), which incorporates information
from multiple content summaries and is thus hopefully closer to the complete
(and unknown) content summary S(D) of database D.

Note that the λm+1 weight associated with a database (as opposed to with the
categories under which it is classified) is usually highest among the λi’s and
so, the word-distribution statistics for the database are not “eclipsed” by the
category statistics. We verify this claim experimentally in Section 3.6.2.2.

In general, shrinkage might in some cases (incorrectly) reduce the estimated
frequency of words that distinctly appear in a database. Fortunately, this re-
duction tends to be small, because of the high λm+1 discussed above, and
hence these distinctive words remain with high frequency estimates. As an
example, consider the AIDS.org database from Table 3.2. The word chlamydia
appears in 3.5% of the documents in the AIDS.org database. This word ap-
pears in 4% of the documents in the document sample from AIDS.org and in
approximately 2% of the documents in the content summary for the AIDS
category. After applying shrinkage, the estimated frequency of the word
chlamydia is somewhat reduced but is still high. The shrinkage-based esti-
mate is that chlamydia appears in 2.85% of the documents in AIDS.org, which
is still close to the real frequency. In general, shrinkage might in some cases
(incorrectly) cause the inclusion of words in the content summary that do
not appear in the corresponding database. Fortunately, such spurious words
tend to be introduced in the summaries with low weight. Using once again
the AIDS.org database as an example, we observed that the word metastasis
was (incorrectly) added by the shrinkage process to the summary: metastasis
does not appear in the database, but is included in documents in other data-
bases under the Health category and hence the word is in the Health category
content summary. The shrunk content summary for AIDS.org estimates that
metastasis appears in just 0.03% of the database documents and such a low
estimate is unlikely to adversely affect database selection decisions. We will
evaluate the positive and negative effects of shrinkage experimentally later in
this and the following chapters.

For illustration purposes, Table 3.2 reports the computed mixture weights for
two databases that we used in our experiments. As we can see, in both cases
the original database content summary and that of the most specific category
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Database Category λ

Uniform 0.075
Root 0.026

AIDS.org Health 0.061
Diseases 0.003
AIDS 0.414
AIDS.org 0.421
Uniform 0.041

American Root 0.041
Economics Science 0.055
Association Social Sciences 0.155

Economics 0.297
American Economics Association 0.411

Table 3.2: The category mixture weights for two databases.

for the database receive the highest weights (0.421 and 0.414, respectively,
for the AIDS.org database, and 0.411 and 0.297, respectively, for the Ameri-
can Economics Association database). However, higher-level categories also
receive non-negligible weights.

Finally, note that the λi weights are computed off-line for each database when
the sampling-based database content summaries are created. This computa-
tion does not involve any overhead at query-processing time.
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Initialization step:
Set each λi to any normalized, non-zero value such that ∑m+1

i=0 λi = 1. (For
example, λi = 1

m+2 , for every i = 0, . . . , m + 1.)

Create the shrunk content summary R̂(D), using the current λi values (Defi-
nition 15).

Expectation step:
Calculate the “similarity” βi of each category Ci with R̂(D), for i = 0, . . . , m:

βi = ∑
w∈Ŝ(D)

λi · p̂(w|Ci)
p̂R(w|D)

Calculate the “similarity” βm+1 of database D with R̂(D):

βm+1 = ∑
w∈Ŝ(D)

λm+1 · p̂(w|D)
p̂R(w|D)

Maximization step:
Maximize the total “similarity” of R̂(D) with the category content summaries
Ŝ(Ci) and with Ŝ(D), by redefining each λi as follows:

λi =
βi

∑m+1
j=0 β j

Modify the shrunk content summary R̂(D) using the current λi values.

Termination check:
When calculation of the λi weights converges (within a small ε) return the
“current” shrunk content summary R̂(D). Otherwise, go to the “Expectation”
step.

Figure 3.5: Using expectation maximization to determine the λi mixture
weights for the shrunk content summary of a database D.
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URL Documents Classification
http://www.bartleby.com/ 375,734 Root→ Arts→ Literature→ Texts
http://java.sun.com/ 78,870 Root→ Computers→ Programming→ Java
http://mathforum.org/ 29,602 Root→ Science→ Mathematics
http://www.uefa.com/ 28,329 Root→ Sports→ Soccer

Table 3.3: Some of the real web databases in the Web data set.

3.5 Experimental Setting

In this section, we describe the data (Section 3.5.1) and techniques (Section 3.5.2)
that we use for the experiments reported in Section 3.6, to evaluate content-
summary quality.

3.5.1 Data Sets

The content summary construction techniques that we proposed above rely
on a hierarchical categorization scheme. For our experiments, we use the
classification scheme from Section 2.3.1, with 72 nodes organized in a 4-level
hierarchy. To evaluate the algorithms described in this chapter, we use four
data sets in conjunction with the hierarchical classification scheme.

• Controlled: This is a set of 400 databases constructed using newsgroup
articles that we also used in the database classification evaluation in
Chapter 2. We used this data set to test extensively our focused probing
algorithm using a variety of classifiers and thresholds.

• TREC4: This is a set of 100 databases created using TREC-4 docu-
ments [Har96] and separated into disjoint databases via clustering us-
ing the K-means algorithm, as specified in [XC99]. By construction, the
documents in each database are on roughly the same topic.

• TREC6: This is a set of 100 databases created using TREC-6 docu-
ments [VH98] and separated into disjoint databases using the same
methodology as for TREC4.

• Web: This set contains the top-5 real web databases from each of the 54
leaf categories of the hierarchy, as ranked in the Google Directory7, plus
other arbitrarily selected web sites, for a total of 315 databases. The
sizes of these databases range from 100 to about 376,000 documents.
Table 3.3 lists four example databases. We used the GNU Foundation’s
wget crawler to download the HTML contents of each site, and we kept
only the text from each file by stripping the HTML tags using the “lynx
–dump” command.

7 http://directory.google.com/

http://www.bartleby.com/
http://java.sun.com/
http://mathforum.org/
http://www.uefa.com/
http://directory.google.com/
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For indexing and searching the files in all data sets, we used Jakarta Lucene,8

an open-source full-text search engine.

3.5.2 Techniques for Comparison

Our experiments evaluate a number of content-summary construction tech-
niques, which vary in their underlying document sampling algorithms (Sec-
tion 3.5.2.1) and on whether they use shrinkage and absolute frequency esti-
mation (Section 3.5.2.2).

3.5.2.1 Sampling Algorithms

We use different sampling algorithms for retrieving the documents based on
which we build the approximate content summaries Ŝ(D) of each database
D:

• Query-Based Sampling (QBS): We experimented with the two versions
of QBS described in Section 3.1, namely QBS-Ord and QBS-Lrd. As the
initial dictionary D for these two methods, we used all words in the
Controlled databases. Each query retrieves up to four previously unseen
documents. Sampling stops when the document sample contains 300
documents. In our experiments, sampling also stops when 500 consec-
utive queries retrieve no new documents. To minimize the effect of
randomness, we run each experiment over five QBS document samples
for each database and report average results.

• Focused Probing (FPS): We evaluate our Focused Probing technique, which
we introduced in Section 3.2. As noted then, Focused Probing builds on
our QProber classification algorithm of Chapter 2. Just as we did in the
evaluation of QProber in Chapter 2, we evaluate Focused Probing with
a variety of underlying document classifiers. Specifically, we consider
four versions of our technique, FP-RIPPER, FP-C4.5, FP-Bayes, and FP-
SVM, which correspond to the QP-RIPPER, QP-C4.5, QP-Bayes, and QP-
SVM versions of QProber of Chapter 2, respectively.

We also consider different values for the τes and τec thresholds, which
affect the granularity of sampling performed by the algorithm. These
thresholds are “editorial” decisions, set to produce the desirable da-
tabase classification (see Chapter 2). All variations were tested with
threshold τes ranging between 0 and 1. Low values of τes result in data-
bases being “pushed” to more categories, which in turn results in larger
document samples. To keep the number of experiments manageable,
we fix the coverage threshold to τec = 10, varying only the specificity
threshold τes.

8http://jakarta.apache.org/lucene/

http://jakarta.apache.org/lucene/
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3.5.2.2 Shrinkage and Frequency Estimation

Our experiments also evaluate the usefulness of our shrinkage (Section 3.4)
and frequency estimation techniques (Section 3.3). To evaluate the effect of
shrinkage on content summary quality, we create the shrunk content sum-
mary R̂(D) for each database D and contrast its quality against that of the
unshrunk content summary Ŝ(D). Similarly, to evaluate the effect of our fre-
quency estimation technique on content summary quality, we consider the
QBS and FPS summaries both with and without this frequency estimation.
We report results on the quality of the content summaries before and after the
application of our shrinkage algorithm.

To apply shrinkage, we need to classify each database into our 72-node topic
hierarchy. Unfortunately, such classification is not available for TREC data,
so for the TREC4 and TREC6 data sets we resort to our classification tech-
nique from Chapter 2.9 A manual inspection of the classification results con-
firmed that they are generally accurate. For example, the TREC4 database
all-83, with articles about AIDS, was correctly classified under the “Root→
Health→ Diseases→ AIDS” category. Interestingly, in the case in which data-
bases were not classified correctly, “similar” databases were still classified into
the same (incorrect) category. For example, all-14, all-21, and all-44 are about
middle-eastern politics and were classified under the “Root→ Science→ So-
cial Sciences→ History” category.

Unlike for TREC4 and TREC6, for which no “external” classification of the
databases is available, for the Web databases we do not have to rely on query
probing for classification. Instead we can use the categories assigned to the
databases in the Google Directory. For QBS, the classification of each data-
base in our data set was indeed derived from the Google Directory. For FPS,
we can either use the (correct) Google Directory database classification, as
for QBS, or rely on the automatically computed database classification that
this technique derives during document sampling. We tried both choices and
found only small differences in the experimental results. Therefore, for con-
ciseness, we only report the FPS results for the automatically derived database
classification. Finally, for the Controlled data set, we use the classification as
derived from our algorithm from Chapter 2, using τes = 0.25 and τec = 10.

3.6 Experimental Results

In this section, we evaluate the alternate content summary construction tech-
niques. We first focus on the impact of the choice of sampling algorithm on
content summary quality (Section 3.6.1). Then, we study the effect of shrink-
age (Section 3.6.2).

9We adapted the technique slightly so that each database is classified under exactly one cate-
gory.
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3.6.1 Effect of Sampling Algorithm

Consider a database D and a content summary A(D) computed using an
arbitrary sampling technique. We now evaluate the quality of A(D) in terms
of how well it approximates the “perfect” content summary S(D), determined
by examining every document in D. In the following definitions, WA is the
set of words that appear in A(D), while WS is the (complete) set of words
that appear in S(D). Our experiments are over the Controlled data set.

Recall: An important property of content summaries is their coverage of the
actual database vocabulary. The weighted recall (wr) of A(D) with respect to

S(D) is defined as wr =
∑w∈WA∩WS

d f (w)
∑w∈WS

d f (w) , which corresponds to the ctf ratio

in [CC01]. This metric gives higher weight to more frequent words, but is
calculated after stopwords (e.g., “a”, “the”) are removed, so this ratio is not
artificially inflated by the discovery of common words.

We report the weighted recall for the different content summary construction al-
gorithms in Figure 3.6a. The variants of the Focused Probing technique achieve
substantially higher wr values than QBS-Ord and QBS-Lrd do. Early during
probing, Focused Probing retrieves documents covering different topics, and
then sends queries of increasing specificity, retrieving documents with more
specialized words. As expected, the coverage of the Focused Probing sum-
maries increases for lower values of the specificity threshold τes, since the
number of documents retrieved for lower thresholds is larger (e.g., 493 docu-
ments for FP-SVM with τes = 0.25 vs. 300 documents for QBS-Lrd): a sample
of larger size, everything else being the same, is better for content summary
construction. In general, the difference in weighted recall between QBS-Lrd
and QBS-Ord is small, but QBS-Lrd has slightly lower wr values due to the
bias induced from querying only using previously discovered words.

To understand whether low-frequency words are present in the approximate
summaries, we resort to the unweighted recall (ur) metric, defined as ur =
|WA∩WS |
|WS | . The ur metric is the fraction of words in a database that are present

in a content summary. Figure 3.6b shows trends similar to the ones for
weighted recall, but the numbers are smaller, showing that lower frequency
words are not well represented in the approximate summaries.

Correlation of Word Rankings: The recall metric can be helpful to compare
the quality of different content summaries. However, this metric alone is not
enough, since it does not capture the relative “rank” of words in the content
summary by their observed frequency. To measure how well a content sum-
mary orders words by frequency with respect to the actual word frequency
order in the database, we use the Spearman Rank Correlation Coefficient (SRCC
for short), which is also used in [CC01] to evaluate the quality of the content
summaries. When two rankings are identical, then SRCC=1; when they are
uncorrelated, SRCC=0; and when they are in reverse order, SRCC=-1. The re-
sults for the different algorithms are shown in Figure 3.6c. Again, the content
summaries produced by the Focused Probing techniques have higher SRCC
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Figure 3.6a: Weighted recall as a function of the specificity threshold τes
and for the Controlled data set.
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Figure 3.6b: Unweighted recall as a function of the specificity threshold
τes and for the Controlled data set.
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Figure 3.6c: Spearman Rank Correlation Coefficient as a function of the
specificity threshold τes and for the Controlled data set.
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Figure 3.6d: Relative error of the d f estimations, for words with d f > 3,
as a function of the specificity threshold τes and for the Controlled data
set.

values than those for QBS-Lrd and QBS-Ord, hinting that Focused Probing re-
trieves a more “representative” sample of documents from the database.

Accuracy of Frequency Estimations: In Section 3.3, we introduced a tech-
nique to estimate the actual absolute frequencies of the words in a database.
To evaluate the accuracy of our predictions, we report the average relative
error for words with actual frequencies greater than three. (Including the
large tail of less-frequent words would highly distort the relative-error com-
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Figure 3.6e: Number of interactions per database, as a function of the
specificity threshold τes and for the Controlled data set.

putation, even for small estimation errors.) Figure 3.6d reports the average
relative error estimates for our algorithms. We also applied our absolute fre-
quency estimation algorithm of Section 3.3 to QBS-Ord and QBS-Lrd, even
though this estimation is not part of the original algorithms in [CC01]. As a
general conclusion, our technique provides a good ballpark estimate of the
absolute frequency of the words.

Efficiency: To measure the efficiency of the probing methods, we report the
sum of the number of queries sent to a database and the number of docu-
ments retrieved (“number of interactions”) in Figure 3.6e. (See Section 2.3.3
for a justification of this metric.) The Focused Probing techniques retrieve –on
average– one document per query, while QBS-Lrd retrieves about one docu-
ment for every two queries. QBS-Ord unnecessarily issues many queries that
produce no document matches. The efficiency of the other techniques is cor-
related with their effectiveness. The more expensive techniques tend to give
better results. The exception is FP-SVM, which for τes > 0 has the lowest
cost (or cost close to the lowest one) and gives results of comparable quality
with respect to the more expensive methods. The Focused Probing probes were
generally short, with a maximum of four words and a median of one word
per query (see Section 2.4.2).

Recall, Rank Correlation, and Efficiency for Identical Sample Size: We have
seen that the Focused Probing algorithms achieve better wr and SRCC values
than the QBS-Lrd and QBS-Ord algorithms do. However, the Focused Prob-
ing algorithms generally retrieve a (moderately) larger number of documents
than QBS-Ord and QBS-Lrd do, and the number of documents retrieved de-
pends on how deeply into the categorization scheme the databases are cate-
gorized. To test whether the improved performance of Focused Probing is just
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Figure 3.7a: Weighted recall as a function of the specificity threshold
τes, for the Controlled data set and for the case where the FP and QBS
methods retrieve the same number of documents.
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a result of the larger sample size, we increased the sample size for QBS-Lrd
to retrieve the same number of documents as each Focused Probing variant.10

We refer to the versions of QBS-Lrd that retrieve the same number of docu-
ments as FP-Bayes, FP-C4.5, FP-RIPPER, and FP-SVM as QBS-Bayes, QBS-C4.5,
QBS-RIPPER, and QBS-SVM, respectively.

The wr, ur, and SRCC values for the alternative versions of QBS-Lrd are shown
in Figures 3.7a, 3.7b, and 3.7c, respectively. We observe that the wr, ur, and
SRCC values of the QBS methods improve with the larger document sample,
but are still lower than their Focused Probing counterparts. In general, the re-
sults show that the Focused Probing methods are more effective than their QBS
counterparts: the Focused Probing queries are generated by document classi-
fiers and tend to “cover” distinct parts of the document space. In contrast, the
QBS methods query the database with words that appear in the retrieved doc-
uments, and these documents tend to contain words already present in the
sample. This difference is more pronounced in the earlier stages of sampling,
where Focused Probing sends more general queries. When Focused Probing
starts sending queries for lower levels of the classification hierarchy, both Fo-
cused Probing and QBS demonstrate similar rates of vocabulary growth. The
exact point where the two techniques start performing similarly depends on
the size of the database. For large databases, Focused Probing dominates QBS
even at deep levels of the hierarchy, while for smaller databases the benefits of
Focused Probing are only visible during the first and second levels of sampling.

Finally, we measured the number of interactions performed by the Focused
Probing and QBS methods when they retrieve the same number of documents.
The sum of the number of queries sent to a database and the number of doc-
uments retrieved (“number of interactions”) is shown in Figure 3.7d. The
average number of queries sent to each database is larger for the QBS meth-
ods than for their Focused Probing counterparts when they retrieve the same
number of documents: the QBS queries are derived from the already acquired
vocabulary, and many of these words appear only in one or two documents,
so a large fraction of the QBS queries return only documents that have been
retrieved before. These queries increase the number of interactions for QBS,
but do not retrieve any new documents.

For completeness, we ran the same set of experiments for the Web, TREC4,
and TREC6 data sets. We use content summaries extracted from FP-SVM
with specificity threshold τes = 0.25 and coverage threshold τec = 10: FP-
SVM exhibits the best accuracy-efficiency tradeoff while τes = 0.25 leads to
good database classification decisions as well (see Chapter 2). We also use the
respective QBS-SVM version of QBS. The results that we obtained (Table 3.4)
were in general similar to those for the Controlled data set. The main difference
is that the number of interactions is substantially lower for both FP-SVM (and
hence for QBS-SVM): the databases in the Controlled data set are typically
classified under multiple categories; in contrast, the databases in Web, TREC4,

10We pick QBS-Lrd over QBS-Ord because QBS-Ord requires a much larger number of queries
to extract its document sample: most of its queries return no results (see Figure 3.6e), making it
the most expensive method.
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Data Set Method Metric
wr SRCC Interactions

Web FP-SVM 0.887 0.813 623
Web QBS-SVM 0.879 0.810 650
TREC4 FP-SVM 0.972 0.884 650
TREC4 QBS-SVM 0.943 0.850 702
TREC6 FP-SVM 0.975 0.905 684
TREC6 QBS-SVM 0.952 0.883 694

Table 3.4: Weighted recall, Spearman Rank Correlation Coefficient, and num-
ber of interactions per database, for the Web, TREC4, and TREC6 data
sets and for the case where FP-SVM and QBS-SVM retrieve the same
number of documents.

and TREC6 are generally classified under only one or two categories, and
hence require much fewer queries for content summary construction than the
Controlled databases do.

Evaluation Conclusions: Overall, the Focused Probing techniques produce sig-
nificantly better-quality summaries than QBS-Ord and QBS-Lrd do, both in
terms of vocabulary coverage and word-ranking preservation. The cost of
Focused Probing in terms of number of interactions with the databases is com-
parable to that for QBS-Lrd (for τes > 0), and significantly lower than that for
QBS-Ord. Finally, the absolute frequency estimation technique of Section 3.3
gives good ballpark approximations of the actual frequencies.

3.6.2 Effect of Shrinkage

We now report experimental results on the quality of the content summaries
generated by the shrinkage technique from Section 3.4. To keep our experi-
ments manageable, we use content summaries extracted from FP-SVM with
specificity threshold τes = 0.25 and coverage threshold τec = 10, which give
good classification decisions. We also pick QBS-Lrd over QBS-Ord, since the
former method demonstrates similar performance at substantially smaller
cost than the latter. (See Section 3.6.1 for a justification of this choice.) For
conciseness, we now refer to FP-SVM as FPS and to QBS-Lrd as QBS.

We evaluate the content summaries using the Controlled, Web, TREC4, and
TREC6 data sets. First, in Section 3.6.2.1 we show that databases classified
under similar categories tend to have similar content summaries. Then, in
Section 3.6.2.2 we show that shrinkage-based content summaries are of higher
quality than their unshrunk counterparts.
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Data numCategories
Set 1 2 3 4
Web 0.83 0.89 0.90 0.91
TREC4 0.85 0.89 0.92 0.95
TREC6 0.86 0.88 0.89 0.92

Table 3.5a: Weighted recall for pairs of database content summaries, as a
function of the number of common categories in the database pairs and
for the Web, TREC4, and TREC6 data sets.

3.6.2.1 Relationship between Content Summaries and Categories

A key conjecture behind our shrinkage algorithm is that databases under the
same category tend to have closely related content summaries. Thus, we
can use the content summary of a database to complement the (incomplete)
content summary of another database in the same category (Section 3.4). We
now explore this conjecture experimentally using the Controlled, Web, TREC4,
and TREC6 data sets.

Each database in the Controlled set is classified using τs = 0.25 and following
the definition in Section 2.1. By construction, we know the contents of all the
databases in the Controlled set, as well as their correct classification. For the
Web data set, we use the database classification as given by Open Directory.
Finally, we classify the databases in the TREC4 and TREC6 data sets using
QP-SVM with τes = 0.25 and τec = 10. Then, for each pair of databases Di
and Dj we measure:

• the number of categories that they share, numCategories, where:

numCategories = |(Path(Ideal(Di))) ∩ Path(Ideal(Dj))|
where Path(Ideal(D)) = {category c |c ∈ Ideal(D) or c is an ancestor of some
n ∈ Ideal(D)}.

• the wr and SRCC values of their correct content summaries.

Figures 3.8a and 3.8b report the wr and SRCC metrics respectively, over all
pairs of databases in the Controlled set and discriminated by numCategories.
The larger the number of common categories between a pair of databases, the
more similar their corresponding content summaries tend to be, according to
the wr and SRCC metrics. Tables 3.5a and 3.5b report the wr and SRCC metrics
respectively, over all pair of databases in the Web, TREC4, and TREC6 data
sets, confirming that databases that are classified under similar categories
have more similar content summaries than databases under different topics.
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Data numCategories
Set 1 2 3 4
Web 0.50 0.59 0.67 0.69
TREC4 0.52 0.55 0.60 0.70
TREC6 0.52 0.55 0.57 0.62

Table 3.5b: Spearman Rank Correlation Coefficient for pairs of database
content summaries, as a function of the number of common categories
in the database pairs and for the Web, TREC4, and TREC6 data sets.

3.6.2.2 Properties of Shrinkage-based Content Summaries

Recall: We used the weighted recall and unweighted recall metrics to mea-
sure the vocabulary coverage of the shrunk content summaries. The shrunk
content summaries include (with non-zero probability) every word in any
content summary. Most words in any given content summary, however, tend
to exhibit a very low probability. Therefore, to not inflate artificially the
recall results (and conversely, to not hurt artificially the precision results),
we drop from the shrunk content summaries every word w with round(|D| ·
p̂R(w|D)) < 1 during evaluation. Intuitively, we drop from the content sum-
mary all the words that are estimated to appear in less than one document.

Table 3.6a shows the weighted recall for different content summary construc-
tion algorithms. Most methods exhibit high weighted recall, which shows
that document sampling techniques identify the most frequent words in the
database. Not surprisingly, shrinkage increases the (already high) wr values
and all shrinkage-based methods have close-to-perfect wr. This improvement
is statistically significant in all cases: a paired t-test [Mar03] showed signifi-
cance at the 0.01% level. The improvement for the Web set is higher compared
to that for the Controlled, TREC4, and TREC6 data sets: the Web set contains
larger databases, and the approximate content summaries are less complete
than the respective approximate content summaries of Controlled, TREC4, and
TREC6. Our shrinkage technique becomes increasingly more useful for larger
databases. To understand whether low-frequency words are present in the
approximate and shrunk content summaries, we use the unweighted recall
metric. Table 3.6b shows that the shrunk content summaries have higher un-
weighted recall as well.

Finally, recall is higher when shrinkage is used in conjunction with the fre-
quency estimation technique. This behavior is to be expected: when frequency
estimation is enabled, the words introduced by shrinkage are close to their
real frequencies, and are used in precision and recall calculations. When fre-
quency estimation is not used, the estimated frequencies of the same words
are often below 0.5, and are therefore not used in precision and recall calcula-
tions.

Precision: A database content summary constructed using a document sam-
ple contains only words that appear in the database. In contrast, the shrunk
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Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.903 0.745
Controlled QBS Yes 0.917 0.745

FPS No 0.912 0.827
FPS Yes 0.928 0.827
QBS No 0.962 0.875

Web QBS Yes 0.976 0.875
FPS No 0.989 0.887
FPS Yes 0.993 0.887
QBS No 0.937 0.918

TREC4 QBS Yes 0.959 0.918
FPS No 0.980 0.972
FPS Yes 0.983 0.972
QBS No 0.959 0.937

TREC6 QBS Yes 0.985 0.937
FPS No 0.979 0.975
FPS Yes 0.982 0.975

Table 3.6a: Weighted recall wr.

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.589 0.523
Controlled QBS Yes 0.601 0.523

FPS No 0.623 0.584
FPS Yes 0.638 0.584
QBS No 0.438 0.424

Web QBS Yes 0.489 0.424
FPS No 0.681 0.520
FPS Yes 0.711 0.520
QBS No 0.402 0.347

TREC4 QBS Yes 0.542 0.347
FPS No 0.678 0.599
FPS Yes 0.714 0.599
QBS No 0.549 0.475

TREC6 QBS Yes 0.708 0.475
FPS No 0.731 0.662
FPS Yes 0.784 0.662

Table 3.6b: Unweighted recall ur.

content summaries may include words not in the corresponding databases. To
measure the extent to which “spurious” words are added –with high weight–
by shrinkage in the content summary, we use the weighted precision (wp) of

A(D) with respect to S(D), wp =
∑w∈WA∩WS

d̂ f (w)

∑w∈WA
d̂ f (w)

. Table 3.7a shows that

shrinkage decreases weighted precision by just 0.8% to 6%.

We also report the unweighted precision (up) metric, defined as up = |WA∩WS |
|WA | .

This metric reveals how many words introduced in a content summary do not
appear in the complete content summary (or, equivalently, in the underlying
database). Table 3.7b reports the results for the up metric, which show that the
shrinkage-based techniques have unweighted precision that is usually above
90% and always above 84%.

Word-Ranking Correlation: Table 3.8 shows that SRCC is higher for the
shrunk content summaries. In general, SRCC is better for the shrunk than
for the unshrunk content summaries: not only do the shrunk content sum-
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Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.989 1.000
Controlled QBS Yes 0.979 1.000

FPS No 0.948 1.000
FPS Yes 0.940 1.000
QBS No 0.981 1.000

Web QBS Yes 0.973 1.000
FPS No 0.987 1.000
FPS Yes 0.947 1.000
QBS No 0.992 1.000

TREC4 QBS Yes 0.978 1.000
FPS No 0.987 1.000
FPS Yes 0.984 1.000
QBS No 0.978 1.000

TREC6 QBS Yes 0.943 1.000
FPS No 0.976 1.000
FPS Yes 0.958 1.000

Table 3.7a: Weighted precision wp.

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.932 1.000
Controlled QBS Yes 0.921 1.000

FPS No 0.895 1.000
FPS Yes 0.885 1.000
QBS No 0.954 1.000

Web QBS Yes 0.942 1.000
FPS No 0.923 1.000
FPS Yes 0.909 1.000
QBS No 0.965 1.000

TREC4 QBS Yes 0.955 1.000
FPS No 0.901 1.000
FPS Yes 0.856 1.000
QBS No 0.936 1.000

TREC6 QBS Yes 0.847 1.000
FPS No 0.894 1.000
FPS Yes 0.850 1.000

Table 3.7b: Unweighted precision up.

maries have better vocabulary coverage, as the recall figures show, but also
the newly added words tend to be ranked properly.

Word-Frequency Accuracy: Our shrinkage-based algorithm modifies the prob-
ability estimates p̂(w|D) in the approximate summaries A(D), in order to gen-
erate a summary which has a probability distribution that is “closer” to the
one in the original S(D). The KL-divergence compares the “similarity” of the
A(D) estimates against the real values in S(D): KL = ∑w∈WA∩WS

p(w|D) · log p(w|D)
p̂(w|D) ,

where p(w|D) is defined as p(w|D) = t f (w,D)
∑i t f (wi ,D) , where t f (w, D) is the total

number of occurrences of w in D. The KL metric takes values from 0 to in-
finity, with 0 indicating that the two content summaries being compared are
equal.

Table 3.9 shows that shrinkage helps decrease large KL values. (Recall that
lower KL values indicate higher quality summaries.) This is a characteristic
of shrinkage [HTF01]: all summaries are shrunk towards some “common”
content summary, which has an “average” distance from all the summaries.
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Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.723 0.628
Controlled QBS Yes 0.723 0.628

FPS No 0.765 0.665
FPS Yes 0.765 0.665
QBS No 0.904 0.812

Web QBS Yes 0.904 0.812
FPS No 0.917 0.813
FPS Yes 0.917 0.813
QBS No 0.981 0.833

TREC4 QBS Yes 0.981 0.833
FPS No 0.943 0.884
FPS Yes 0.943 0.884
QBS No 0.961 0.865

TREC6 QBS Yes 0.961 0.865
FPS No 0.937 0.905
FPS Yes 0.937 0.905

Table 3.8: Spearman Correlation Coefficient SRCC.

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.364 0.732
Controlled QBS Yes 0.389 0.645

FPS No 0.483 0.542
FPS Yes 0.378 0.503
QBS No 0.361 0.531

Web QBS Yes 0.382 0.472
FPS No 0.298 0.254
FPS Yes 0.281 0.224
QBS No 0.296 0.300

TREC4 QBS Yes 0.175 0.180
FPS No 0.253 0.203
FPS Yes 0.193 0.118
QBS No 0.305 0.352

TREC6 QBS Yes 0.287 0.354
FPS No 0.223 0.193
FPS Yes 0.301 0.126

Table 3.9: KL-divergence.

This effectively reduces the variance of the estimations and leads to reduced
estimation “risk.” However, shrinkage (moderately) hurts content-summary
accuracy in terms of the KL metric in cases where KL is already low for
the unshrunk summaries. We use this observation in our shrinkage-based
database selection algorithm in Chapter 4, where our algorithm attempts to
identify the cases where shrinkage is likely to help general database selection
accuracy and avoids applying shrinkage in other cases.

Evaluation Conclusions: The general conclusion from our experiments on
content summary quality is that shrinkage drastically improves content sum-
mary recall, at the expense of precision. The high weighted precision of the
shrinkage-based summaries suggests that the spurious words introduced by
shrinkage appear with low weight in the summaries, which should reduce
any potential negative impact on database selection. In Chapter 4, we present
experimental evidence that the loss in precision ultimately does not hurt,
since shrinkage improves overall database selection accuracy.
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3.7 Conclusions

In this chapter, we presented a novel and efficient method for the construc-
tion of content summaries of text databases. Our algorithm creates content
summaries of higher quality than alternate approaches and, additionally, cat-
egorizes databases in a classification scheme. We also presented a shrinkage-
based technique that further improves the quality of the generated content
summaries. Our method exploits content summaries of similarly classified
databases and combines them in a principled manner using “shrinkage.” The
shrinkage-based content summaries are more complete than their “unshrunk”
counterparts. Our shrinkage-based technique achieves this performance gain
efficiently, without requiring any increase in the size of the document sam-
ples. In the next chapter, we will see that the shrinkage-based summaries can
substantially improve the accuracy of database selection.
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Chapter 4

Classification-Aware
Database Selection

In Chapter 3, we presented a technique to automate the extraction of high-
quality content summaries from hidden-web text databases, which inform the
database selection component of metasearchers. As we discussed, a database
selection challenge is that content summaries of hidden-web text databases,
derived via sampling, tend to be incomplete and miss many of the database
words. In this chapter, we build on Chapter 3 and present two novel data-
base selection algorithms that address this challenge and perform better than
existing database selection algorithms in the presence of incomplete content
summaries.

As argued in Chapter 3, content summaries built from relatively small docu-
ment samples are inherently incomplete, which in turn might affect the per-
formance of database selection algorithms that rely on such summaries. In
this chapter, we explore two alternative algorithms to make database selec-
tion more resilient to incomplete content summaries. Both algorithms are
based on the observation –which we validated experimentally in Chapter 3–
that topically similar databases tend to have related content summaries. Our
first algorithm selects databases hierarchically based on the categorization of
the databases. The algorithm chooses the categories to explore for a query
based on the category content summaries, and then picks the best databases
in the most appropriate categories. Our second algorithm is a “flat” selection
strategy that exploits the database categorization implicitly, via the shrinkage-
based content summaries that we introduced in Chapter 3. The novelty of our
algorithm is that it decides whether the application of shrinkage is beneficial
in an adaptive and query-specific way.

We evaluate the performance of our database selection strategies with ex-
tensive experiments that involve text databases and queries from the TREC
testbed, together with the “relevance judgments” associated with the queries
and the database documents. We compare our methods with a variety of
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state-of-the-art database selection algorithms. As we will see, our techniques
result in a significant improvement in performance over the state of the art,
achieved efficiently just by exploiting the database classification information
and without increasing the document-sample size.

In brief, the main research contributions presented in this chapter are:

• A hierarchical database selection algorithm that works over a topical classi-
fication scheme.

• An adaptive database selection algorithm that decides whether to use the
shrinkage-based content summaries in an adaptive and query-specific
way.

• A thorough, extensive experimental evaluation of the database selection
algorithms using the TREC testbed.

The algorithms described in this chapter rely on the assumption that data-
bases are topically focused. An interesting direction for future work is to
adapt the presented algorithms to work with heterogeneous databases that
contain documents about multiple topics.

The rest of the chapter is organized as follows. Section 4.1 presents our hier-
archical database selection algorithm. Section 4.2 describes our adaptive da-
tabase selection algorithm that uses the shrinkage-based content summaries.
Sections 4.3 and 4.4 describe the experimental settings and results. Finally,
Section 4.5 concludes the chapter. The bulk of this chapter has appeared
in [IG02, IG04].

4.1 Exploiting Topic Hierarchies for Database Se-
lection

As discussed in Chapter 3, any efficient algorithm for constructing content
summaries through query probes is likely to produce incomplete content
summaries, which can affect the effectiveness of the database selection pro-
cess. Specifically, database selection would suffer the most for queries with
one or more words not present in content summaries. We now introduce
a hierarchical database selection algorithm that exploits the database catego-
rization and content summaries to alleviate the negative effect of incomplete
content summaries. This algorithm consists of two basic steps:

1. “Propagate” the database content summaries to the categories of the hi-
erarchical classification scheme and create the associated category con-
tent summaries using Definition 14, Section 3.4.2.
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CANCERLIT

148,944 documents

Word df

… ...

breast 121,134

… ...

cancer 91,688

… ...

diabetes 11,344

… …

metastasis <not found>

CancerBACUP

17,328 documents

Word df

… ...

breast 12,546

… ...

cancer 9,735

… ...

diabetes <not found>

… …

metastasis 3,569

Category: Cancer 

|db(Cancer)| =2 

166,272 documents

Word df

… ...

breast 133,680

… ...

cancer 101,423

… ...

diabetes 11,344

… …

metastasis 3,569

WebMD

3,346,639 documents

Word df

… ...

… ...

… ...

Category: Health 

|db(Health)| = 5 

3,747,366 documents

Word df

… ...

… ...

… ...

…

Figure 4.1: Associating content summaries with categories.

2. Use the content summaries of categories and databases to perform da-
tabase selection hierarchically by zooming in on the most relevant por-
tions of the topic hierarchy.

The intuition behind our approach is that databases classified under similar
topics tend to have similar vocabularies. (We presented supporting experi-
mental evidence for this statement in Section 3.6.2.1.) Hence, we can view
the (potentially incomplete) content summaries of all databases in a category
as complementary, and exploit this for better database selection. For exam-
ple, consider the CANCERLIT database and its associated content summary
in Figure 4.1. As we can see, CANCERLIT was correctly classified under

“Cancer” by the algorithm of Section 3.2. Unfortunately, the word “metastasis”
did not appear in any of the documents extracted from CANCERLIT dur-
ing probing, so this word is missing from the content summary. However,
we see that CancerBACUP1, another database classified under “Cancer”, has
d̂ f (metastasis) = 3, 569, a relatively high value. Hence, we might conjecture
that the word “metastasis” is an important word for all databases in the “Can-
cer” category and that this word did not appear in CANCERLIT because it was
not discovered during sampling, not because it does not occur in the database.
Therefore, we can create a content summary with category “Cancer” in such a
way that the word “metastasis” appears with a relatively high frequency. This
summary is obtained by merging the summaries of all databases under the
category.

1http://www.cancerbacup.org.uk

http://www.cancerbacup.org.uk
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HierSelect(Query Q, Category C, int K)
1: Use a database selection algorithm to assign a score for Q to each subcategory of C
2: if there is a subcategory of C with a non-zero score
3: Pick the subcategory Cj with the highest score
4: if |db(Cj)| ≥ K //Cj has enough databases
5: return HierSelect(Q,Cj,K)
6: else // Cj does not have enough databases
7: return DBs(Cj) ∪ FlatSelect(Q,C− Cj,K− |db(Cj)|)
8: else // no subcategory C has non-zero score
9: return FlatSelect(Q,C,K)

Figure 4.2: Selecting the K most specific databases for a query hierarchi-
cally.

In general, the content summary of a category C (see Section 3.4.2) with a
set db(C) = {D1, . . . , Dn} of databases classified (not necessary immediately)
under C includes:

• The number of databases |db(C)| under C (n in this case).

• The number of documents |C| = ∑D∈db(C) |D| stored in all databases
under C.

• For each word w, the total number of documents d̂ f C(w) in any D ∈
db(C) that contain the word w: d̂ f C(w) = ∑D∈db(C) d̂ f (w).2

By having content summaries associated with categories in the topic hierar-
chy, we can select databases for a query by proceeding hierarchically from the
root category. At each level, we use existing flat database algorithms such as
CORI [CLC95] or bGlOSS [GGMT99]. These algorithms assign a score to each
database (or category in our case), which specifies how promising the data-
base (or category) is for the query, as indicated by the content summaries (see
Example 8). Given the scores for the categories at one level of the hierarchy,
the selection process continues recursively down the most promising subcate-
gories. As further motivation for our approach, earlier research has indicated
that distributed information retrieval systems tend to produce better results
when documents are organized in topically cohesive clusters [XC99, LCC00].

Figure 4.2 specifies our hierarchical database selection algorithm in detail.
The algorithm receives as input a query Q and the target number of databases
K that we are willing to search for the query. Also, the algorithm receives the
top category C as input, and starts by invoking a flat database selection algo-
rithm to score all subcategories of C for the query (Step 1), using the content
summaries associated with the subcategories. We assume in our discussion
that the scores produced by the database selection algorithms are greater than

2As mentioned in Section 3.4.2, we considered alternative definitions for d̂ f C(w), using var-
ious weighting schemes for summing the d̂ f (w) values. We implemented the alternatives and
obtained results that were virtually identical to the ones obtained using the current definition.
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Root

|db(Root)| = 136

Sports

|db(Sports)|=21

(score: 0.93)

Arts

|db(Arts)|=35

(score: 0.0)

Computers

|db(Computers)|=55

(score: 0.15)

Hockey

|db(Hockey)|=8

(score:0.08)

Baseball

|db(Baseball)|=7

(score:0.78)

ESPN

(score:0.68)

Health

|db(Health)|=25

(score: 0.10)

Soccer

|db(Soccer)|=5

(score:0.12)

Query: [babe AND ruth]

Figure 4.3: Exploiting a topic hierarchy for database selection.

or equal to zero, with a zero score indicating that a database or category
should be ignored for the query. If at least one “promising” subcategory has
a non-zero score (Step 2), then the algorithm picks the best such subcategory
Cj (Step 3). If Cj has K or more databases under it (Step 4), the algorithm
proceeds recursively under that branch only (Step 5). This strategy privileges
“topic-specific” databases over databases with broader scope. On the other
hand, if Cj does not have sufficiently many (i.e., K or more) databases (Step
6), then intuitively the algorithm has gone as deep in the hierarchy as possi-
ble (exploring only category Cj would result in fewer than K databases being
returned). Then, the algorithm returns all |db(Cj)| databases under Cj, plus
the best K − |db(Cj)| databases under C but not in Cj, according to the “flat”
database selection algorithm of choice (Step 7). If no subcategory of C has
a non-zero score (Step 8), again this indicates that the execution has gone as
deep in the hierarchy as possible. Therefore, we return the best K databases
under C, according to the flat database selection algorithm (Step 9).

Figure 4.3 shows an example of an execution of this algorithm for query [babe
AND ruth] and for a target of K = 3 databases. The top-level categories are
evaluated by a flat database selection algorithm for the query, and the “Sports”
category is deemed best, with a score of 0.93. Since the “Sports” category has
more than three databases, the query is “pushed” into this category. The
algorithm proceeds recursively by pushing the query into the “Baseball” cate-
gory. If we had initially picked K = 10 instead, the algorithm would have still
picked “Sports” as the first category to explore. However, “Baseball” has only
7 databases, so the algorithm picks them all, and chooses the best 3 databases
under “Sports” to reach the target of 10 databases for the query.

In summary, our hierarchical database selection algorithm attempts to choose
the best, most-specific databases for a query. By exploiting the database cat-
egorization, this hierarchical algorithm manages to compensate for the nec-
essarily incomplete database content summaries produced by query probing.
However, by selecting first the most appropriate categories, this algorithm
might miss some relevant databases that are not under the selected categories.
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Input: Query q = [w1, . . . , wn]; databases D1, . . . , Dm

Content Summary Selection step:
For each Di :

For every possible choice of values for d1, . . . , dn (see text):
Compute the probability P that wk appears in
exactly dk documents in Di , for k = 1, . . . , n.

Compute the score s(q, Di) assuming that wk appears
in exactly dk documents in Di , for k = 1, . . . , n.

If the standard deviation of the score distribution
across dk values is larger than its mean

then A(Di) = R̂(Di) // use “shrunk” content summary
else A(Di) = Ŝ(Di) // use “unshrunk” content summary

Scoring step:
For each Di :

Compute s(q, Di) using the A(Di) content summary,
as selected in the “Content Summary Selection” step.

Ranking step:
Rank the databases by decreasing score s(q, Di).

Figure 4.4: Using shrinkage adaptively for database selection.

Next, we describe an algorithm that exploits the shrinkage-based content sum-
maries of Section 3.4 to overcome this problem.

4.2 Improving Database Selection using Shrinkage

Section 3.4 introduced a shrinkage-based strategy to complement the incom-
plete content summary of a database with the summaries of topically related
databases. In principle, existing database selection algorithms could proceed
without modification and use the shrunk summaries to assign scores for all
queries and databases. However, sometimes shrinkage might not be beneficial
and should not be used. Intuitively, shrinkage should be used to determine
the score s(q, D) for a query q and a database D only if the “uncertainty”
associated with this score would otherwise be large.

The uncertainty associated with an s(q, D) score depends on a number of
sample-, database-, and query-related factors. An important factor is the size
of the document sample relative to that of database D. If an approximate sum-
mary Ŝ(D) was derived from a sample that included most of the documents
in D, then this summary is already “sufficiently complete.” (For example, this
situation might arise if D is a small database.) In this case, shrinkage is not
necessary and might actually be undesirable, since it might introduce spuri-
ous words into the content summary from topically related (but not identical)
databases. Another factor is the frequency of the query words in the sample
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used to determine Ŝ(D). If, say, every word in a query appears in close to
all the sample documents, and the sample is representative of the entire data-
base contents, then there is little uncertainty on the distribution of the words
over the database at large. This is also the case for the analogous situation in
which every query word appears in close to no sample documents. In either
case, shrinkage would provide limited benefit and should then be avoided. In
contrast, for other query-word distribution scenarios the approximate content
summary might not be sufficient to reliably establish the query-specific score
for the database, in which case shrinkage is desirable.

More formally, consider a query q = [w1, . . . , wn] with n words w1, . . . , wn,
a database D, and an approximate content summary for D, Ŝ(D), derived
from a random sample S of D. Furthermore, suppose that word wk appears
in exactly sk documents in the sample S. For every possible combination of
values d1, . . . , dn (see below), we compute:

• The probability P that wk appears in exactly dk documents in D, for
k = 1, . . . , n:

P =
n

∏
k=1

dγ
k

(
dk
|D|

)sk
(

1− dk
|D|

)|S|−sk

∑|D|
i=0 iγ ·

(
i
|D|

)sk
(

1− i
|D|

)|S|−sk
(4.1)

where γ is a database-specific constant. (For details, see Appendix A at
the end of this chapter.)

• The score s(q, D) that the database selection algorithm of choice would
assign to D if p(wk|D) = dk

|D| , for k = 1, . . . , n.

So for each possible combination of values d1, . . . , dn, we compute both the
probability of the value combination and the score that the database selection
algorithm would assign to D for this document frequency combination. Then,
we can approximate the “uncertainty” behind the s(q, D) score by examining
the mean and variance of the database scores over the different d1, . . . , dn
values. This computation can be performed efficiently for a generic database
selection algorithm: given the sample frequencies s1, . . . , sn, a large number
of possible d1, . . . , dn values have virtually zero probability of occurring, so
we can ignore them. Additionally, mean and variance converge fast, even
after examining only a small number of d1, . . . , dn combinations. Specifically,
we examine random d1, . . . , dn combinations and periodically calculate the
mean and variance of the score distribution. Usually, after examining just a
few hundred random d1, . . . , dn combinations, mean and variance converge
to a stable value. This computation can be even faster for a large class of
database selection algorithms that assume independence between the query
words (e.g., [GGMT99, CLC95, XC99]). For these algorithms, we can calculate
the mean and variance for each query word separately, and then combine
them into the final mean score and variance, respectively. In Appendix B, at
the end of this chapter, we provide more details.
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Figure 4.4 summarizes the discussion above, and shows how we can adap-
tively use shrinkage with an existing database selection algorithm. Specifi-
cally, the algorithm takes as input a query q and a set of databases D1, . . . , Dm.
The “Content Summary Selection” step decides whether to use shrinkage for
each database Di, as discussed above. If the distribution of possible scores
has high variance, then Ŝ(Di) is considered unreliable and the shrunk con-
tent summary R̂(Di) is used instead. Otherwise, shrinkage is not applied.
Then, the “Scoring” step computes the score s(q, Di) for each database Di, us-
ing the content summary chosen for Di in the “Content Summary Selection”
step. Finally, the “Ranking” step orders all databases by their final score for
the query. The metasearcher then uses this rank to decide what databases to
search for the query.

4.3 Experimental Setting

In this section, we describe the data (Section 4.3.1) and techniques (Section 4.3.2)
that we use for the experiments (Section 4.4) that evaluate the accuracy of the
proposed database selection algorithms.

4.3.1 Data Sets

Both database selection algorithms described in this chapter rely on a hierar-
chical categorization scheme. For our experiments, we use the classification
scheme from Section 2.3.1, with 72 nodes organized in a 4-level hierarchy,
together with the TREC4 and TREC6 data sets (see Section 3.5.1). For the eval-
uation, we need to classify each database into the 72-node hierarchy. Since
such classification is not available for TREC data, for the TREC4 and TREC6
data sets we use our classification technique from Chapter 2, just as we did in
Chapter 3 (for details, see Section 3.5.2).

4.3.2 Techniques for Comparison

Sampling Algorithms: Just as in Section 3.6.2, we use two versions of the
sampling algorithms described in Section 3.5.2.1 for creating the approximate
content summaries Ŝ(D) of each database D:

• Query-Based Sampling (QBS): Specifically, we use the QBS-Lrd version
of Query Based Sampling, which has performance similar to the alterna-
tive QBS-Ord, at substantially smaller cost (see Section 3.6.1).

• Focused Probing (FPS): Specifically, we use the FP-SVM version of Fo-
cused Probing, which exhibits the best accuracy-efficiency tradeoff among
the variations of Focused Probing that we evaluated (see Section 3.6.1).
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To evaluate the effect of our frequency estimation technique (Section 3.3) on
database selection accuracy, we consider the QBS and FPS summaries both
with and without this frequency estimation. Also, since stemming can help
alleviate the data sparseness problem, we consider content summaries both
with and without stemming.

Database Selection Algorithms: The algorithms presented in this chapter
(Sections 4.1 and 4.2) are built on top of underlying “base” database selection
algorithms. We consider three well-known such algorithms from the litera-
ture.

• bGlOSS, as described in [GGMT99]. Databases are ranked for a query q
by decreasing score s(q, D) = |D| ·∏w∈q p̂(w|D).

• CORI, as described in [FPC+99]. Databases are ranked for a query q
by decreasing score s(q, D) = ∑w∈q

0.4+0.6·T·I
|q| , where T = ( p̂(w|D) ·

|D|)/( p̂(w|D) · |D| + 50 + 150 · cw(D)
mcw ), I = log

(
m+0.5
c f (w)

)
/ log (m + 1.0),

cf (w) is the number of databases containing w, m is the number of
databases being ranked, cw(D) is the number of words in D, and mcw is
the mean cw among the databases being ranked. One potential problem
with the use of CORI in conjunction with shrinkage is that virtually
every word has cf (w) equal to the number of databases in the data set:
every word appears with non-zero probability in every shrunk content
summary. Therefore, when we calculate cf (w) for a word w in our CORI
experiments, we consider w as “present” in a database D only when
round(|D| · p̂R(w|D)) ≥ 1.

• Language Modeling (LM), as described in [SJCO02]. Databases are
ranked for a query q by decreasing score s(q, D) = ∏w∈q(λ · p̂(w|D) +
(1− λ) · p̂(w|G)). The LM algorithm is equivalent to the KL-based data-
base selection method described in [XC99]. For LM, p(w|D) is defined
differently than in Definition 12, Chapter 3. Specifically, p(w|D) =

t f (w,D)
∑i t f (wi ,D) , where t f (w, D) is the total number of occurrences of w in
D. The algorithms described in Section 3.4 can be easily adapted to re-
flect this difference, by substituting this definition of p(w|D) for that in
Definition 12. LM smoothes the p̂(w|D) probability with the probability
p̂(w|G) for a “global” category G. (Our shrinkage technique extends
this principle and does multilevel smoothing of p̂(w|D), using the hier-
archical classification of D.) In our experiments, we derive the probabil-
ities p̂(w|G) from the “Root” category summary and we use λ = 0.5 as
suggested in [SJCO02].

We experimentally evaluate the three database selection algorithms above
with three variations:

• Plain: Using “unshrunk” (incomplete) database content summaries ex-
tracted via QBS or FPS.
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Figure 4.5: The Rk ratio for CORI with stemming over the TREC4 data
set.

• Shrinkage: Using shrinkage when appropriate (as discussed in Sec-
tion 4.2), again over database content summaries extracted via QBS or
FPS.

• Hierarchical: Using “unshrunk” database content summaries (extracted
via QBS or FPS) in conjunction with the hierarchical database selection
algorithm from Section 4.1.
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Figure 4.6: The Rk ratio for CORI without stemming over the TREC4
data set.
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Figure 4.7: The Rk ratio for CORI with stemming over the TREC6 data
set.
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Figure 4.8: The Rk ratio for CORI without stemming over the TREC6
data set.
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Figure 4.9: The Rk ratio for bGlOSS with stemming over the TREC4 data
set.
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Figure 4.10: The Rk ratio for bGlOSS without stemming over the TREC4
data set.
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Figure 4.11: The Rk ratio for bGlOSS with stemming over the TREC6
data set.
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Figure 4.12: The Rk ratio for bGlOSS without stemming over the TREC6
data set.
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Figure 4.13: The Rk ratio for LM with stemming over the TREC4 data
set.
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Figure 4.14: The Rk ratio for LM without stemming over the TREC4
data set.



104 4.4 Experimental Results

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k (databases selected)

R
k

QBS - Shrinkage

QBS - Hierarchical

QBS - Plain

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k (databases selected)

R
k

FPS - Shrinkage

FPS - Hierarchical

FPS - Plain

Figure 4.15: The Rk ratio for LM with stemming over the TREC6 data
set.
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Figure 4.16: The Rk ratio for LM without stemming over the TREC6
data set.
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4.4 Experimental Results

In this section, we evaluate the accuracy of the database selection algorithms
that we presented in this chapter. We first describe our evaluation metric, and
then we study the performance of the proposed database selection algorithms
under a variety of settings.

Consider a ranking of the databases ~D = D1, . . . , Dm according to the scores
produced by a database selection algorithm for some query q. To measure
the “goodness” or general “quality” of such a rank, we follow an evaluation
methodology that is prevalent in the information retrieval community, and
consider the number of documents in each database that are relevant to q, as
determined by a human judge [SM83]. Intuitively, a good rank for a query
includes –at the top– those databases with the largest number of relevant
documents for the query.

If r(q, Di) denotes the number of Di documents that are relevant to query
q, then A(q, ~D, k) = ∑k

i=1 r(q, Di) measures the total number of relevant doc-
uments among the top-k databases in ~D. To normalize this measure, we
consider a hypothetical, “perfect” database rank ~DH = Dh1 , . . . , Dhm in which
databases are sorted by their r(q, Dhi

) value. (This is of course unknown to
the database selection algorithm.) Then, we define the Rk metric for a query

and database rank ~D as Rk = A(q,~D,k)
A(q,~DH ,k)

[GGMT99]. A “perfect” ordering of

k databases for a query yields Rk = 1, while a (poor) choice of k databases
with no relevant content results in Rk = 0. We note that when a database
receives the “default” score from a database selection algorithm (i.e., when
the score assigned to a database for a query is equal to the score assigned to
an empty query) we consider that the database is not selected for searching.
This sometimes results in a database selection algorithm selecting fewer than
k databases for a query.

The Rk metric relies on human-generated relevance judgments for the queries
and documents. For our experiments on database selection accuracy, we focus
on the TREC4 and TREC6 data sets, which include queries and associated
relevance judgments.3 We use queries 201-250 from TREC-4 with the TREC4
data set and queries 301-350 from TREC-6 with the TREC6 data set. The
TREC-4 queries are long, with 8 to 34 words and an average of 16.75 words
per query. The TREC-6 queries are shorter, with 2 to 5 words and an average
of 2.75 words per query.

We considered eliminating stopwords (e.g., “the”) from the queries, as well as
applying stemming to the query and document words (e.g., so that a query

3We do not consider the Web and Controlled data sets of Chapter 3 for these experiments
because of the lack of relevance judgments for them. However, in [IG02] we presented a prelim-
inary evaluation of the hierarchical database selection algorithm of Section 4.1 over a subset of
the Web data set, for a relatively low-scale evaluation. (This evaluation used relevance judgments
provided by volunteer colleagues.) The results in [IG02] are consistent with those that we present
here over the TREC data.
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[computers] matches documents with word “computing”). While the results
improve with stopword elimination, a paired t-test showed that the differ-
ence in performance is not statistically significant, therefore we only report
results with stopword elimination. Stemming tends to improve performance
for small values of k. The results are mixed when k > 10.

Figures 4.5, 4.6, 4.7, and 4.8 show results for the CORI database selection algo-
rithm. We consider both the TREC4 and TREC6 data sets and queries, as well
as the QBS and FPS content summary construction strategies (Section 4.3.2).
We consider applying CORI over “unshrunk” content summaries (QBS-Plain
and FPS-Plain), using the adaptive shrinkage-based strategy (QBS-Shrinkage
and FPS-Shrinkage), and using the hierarchical algorithm (QBS-Hierarchical
and FPS-Hierarchical). Figures 4.9, 4.10, 4.11, and 4.12 show results for the
bGlOSS database selection algorithm, while Figures 4.13, 4.14, 4.15, and 4.16
show results for the LM database selection algorithm.

Overall, a paired t-test shows that QBS-Shrinkage improves the database se-
lection performance over QBS-Plain, and this improvement is statistically sig-
nificant (p < 0.05). FPS-Shrinkage also improves the database selection perfor-
mance relative to FPS-Plain, but this improvement is statistically significant
only when k < 10. We now describe the details of our findings.

Shrinkage vs. Plain: The first conclusion from our experiments is that QBS-
Shrinkage and FPS-Shrinkage improve performance compared to QBS-Plain
and FPS-Plain, respectively. Shrinkage helps because new words are added in
the content summaries in a database- and category-specific manner. In Table 4.1,
we report the number of times shrinkage was applied for each database-query
pair and for each database selection algorithm. Since the queries for TREC6
are shorter, shrinkage was applied comparatively fewer times for TREC6 than
for TREC4. Also, shrinkage was applied more frequently for bGlOSS than for
LM and CORI. bGlOSS does not have any form of smoothing and assigns zero
scores to databases whose content summaries do not contain a query word.
This results in high variance for the bGlOSS scores, which in turn triggers the
application of shrinkage.

Interestingly, Table 4.1 shows that shrinkage is applied relatively few times
overall, yet its impact on database selection accuracy is large, as we have seen.
To understand why, note that the Table 4.1 figures refer to database-query pairs.
We have observed that the application of shrinkage for even a few critical
databases for a given query can sometimes dramatically improve the quality
of the database rank that is produced for the query. As a real example of
this phenomenon, consider the TREC-6 query [unexplained highway accidents]
and database all-2, which contains 92.5% of all the relevant documents for
the query. Using the LM algorithm (for both FPS and QBS) database all-2
is ranked 16th, resulting in low Rk values for any k < 16. Our adaptive
shrinkage algorithm decides to use shrinkage for this specific database-query
pair, and database all-2 is ranked 3rd after application of shrinkage. This
results in substantially larger Rk values for the shrinkage-based algorithms
for 3 ≤ k ≤ 15. While our adaptive database selection algorithm applied
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Data Sampling Database Shrinkage
Set Method Selection Application

bGlOSS 35.42%
FPS CORI 17.32%

TREC4 LM 15.40%
bGlOSS 78.12%

QBS CORI 15.68%
LM 17.32%
bGlOSS 33.43%

FPS CORI 13.12%
TREC6 LM 12.78%

bGlOSS 58.94%
QBS CORI 14.32%

LM 11.73%

Table 4.1: Percentage of query-database pairs for which shrinkage was
applied.

shrinkage in just 5% of the databases for this query (i.e., for just 5 databases
out of 100), the resulting database rank for the query is significantly better
than the rank produced with no shrinkage.

Shrinkage vs. Hierarchical: QBS-Hierarchical and FPS-Hierarchical generally
outperform their “plain” counterparts. This confirms our observation that cat-
egorization information helps compensate for incomplete summaries. Exploit-
ing this categorization via shrinkage results in even higher accuracy: QBS-
Shrinkage and FPS-Shrinkage significantly outperform QBS-Hierarchical and
FPS-Hierarchical. This improvement is due to the “flat” nature of our shrink-
age method: QBS-Shrinkage and FPS-Shrinkage can rank the databases “glob-
ally,” while QBS-Hierarchical and FPS-Hierarchical make irreversible choices
at each category level of the hierarchy. Even when a chosen category contains
only a small number of databases with relevant documents, the hierarchical al-
gorithm continues to select (irrelevant) databases from the (relevant) category.
When a query “cuts across” multiple categories, the hierarchical algorithm
might fail to select the appropriate databases. In contrast, our shrinkage-
based approach can potentially select databases from multiple categories and
hence manages to identify the appropriate databases for a query, no matter if
they are similarly classified or not.

Adaptive vs. Universal Application of Shrinkage: The strategy in Section 4.2
dynamically decides when to apply shrinkage for database selection. To un-
derstand whether this decision step is necessary, we evaluated the perfor-
mance of the algorithms when we always decide to use shrinkage (i.e., when
the R̂(Di) content summary is always chosen in Figure 4.4). Figures 4.17, 4.18, 4.19,
and 4.20 show the TREC4 results for CORI and bGlOSS, respectively, with
QBS-Universal and FPS-Universal denoting universal application of shrink-
age. (For conciseness, we do not show the corresponding results for LM,
which are similar to the ones for CORI. Similarly we omit the results for the
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Figure 4.17: The Rk ratio for CORI with stemming over the TREC4 data
set, with and without universal application of shrinkage.
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Figure 4.18: The Rk ratio for CORI without stemming over the TREC4
data set, with and without universal application of shrinkage.
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Figure 4.19: The Rk ratio for bGlOSS with stemming over the TREC4
data set, with and without universal application of shrinkage.
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Figure 4.20: The Rk ratio for bGlOSS without stemming over the TREC4
data set, with and without universal application of shrinkage.
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TREC6 data set.) The only case where QBS-Universal and FPS-Universal are
better than QBS-Plain and FPS-Plain, respectively, is for bGlOSS (Figures 4.19,
and 4.20): unlike CORI and LM, bGlOSS does not have any form of “smooth-
ing” already built in, so if a query word is not present in a content sum-
mary, the corresponding database gets a zero score from bGlOSS. Unlike for
bGlOSS, CORI and LM perform worse when we apply shrinkage universally
than when we do so adaptively. The only exception is for content summaries
created without the use of stemming, and only for small values of k, but even
in this case the small improvement is not statistically significant. This result
indicates that CORI and LM handle incomplete content summaries in a more
graceful way than bGlOSS does, since both CORI and LM have a form of
smoothing already embedded.

Frequency Estimation: We also examined the effect of frequency estimation
(Section 3.3) on database selection. Figures 4.21, 4.22, 4.23, and 4.24 show
the results for the CORI over TREC4 and TREC6, respectively. In general,
frequency estimation affected only the performance of the CORI database
selection algorithm, and had only little effect on the performance of bGlOSS
and LM, so we do not show plots for these two techniques. The reason is that
bGlOSS and LM rely on probabilities that remain virtually unaffected after the
frequency estimation step. In contrast, CORI relies on document frequencies.
Figures 4.21, 4.22, 4.23, and 4.24 show that, when shrinkage is used, frequency
estimation generally improved the performance of CORI, by 10% to 30% for
small values of k, with respect to the case where the raw word frequencies
for the document sample are used. Interestingly, frequency estimation alone,
without use of shrinkage, did not improve database selection, hinting that
more accurate frequency estimates only benefit database selection when the
underlying content summaries are sufficiently complete.

Evaluation Conclusions: A general conclusion from the experiments is that
adaptive application of shrinkage significantly improves database selection
when selection decisions are based on sparse content summaries. An inter-
esting observation is that the universal application of shrinkage is not always
beneficial, indicating that for cases where selection decisions are already accu-
rate, shrinkage negatively affects the selection process. Another conclusion is
that stemming-based summaries are typically better than their non-stemmed
counterparts, since stemming reduces data sparseness. The difference is sig-
nificant for small numbers of selected databases, which indicates that stem-
ming results in better database rankings. The improvement is achieved by just
exploiting the topical classification of the databases, without any additional
sampling cost.
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Figure 4.21: The Rk ratio for CORI with stemming over the TREC4 data
set, for summaries generated with (“-FreqEst” suffix) and without (“-
NoFreqEst” suffix) the use of frequency estimation.
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Figure 4.22: The Rk ratio for CORI without stemming over the TREC4
data set, for summaries generated with (“-FreqEst” suffix) and without
(“-NoFreqEst” suffix) the use of frequency estimation.
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Figure 4.23: The Rk ratio for CORI with stemming over the TREC6 data
set, for summaries generated with (“-FreqEst” suffix) and without (“-
NoFreqEst” suffix) the use of frequency estimation.
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Figure 4.24: The Rk ratio for CORI without stemming over the TREC6
data set, for summaries generated with (“-FreqEst” suffix) and without
(“-NoFreqEst” suffix) the use of frequency estimation.
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4.5 Conclusion

Database selection is critical to building efficient metasearchers that interact
with potentially large numbers of databases. Exhaustively searching all avail-
able databases to answer each query is impractical (or even not possible) in
increasingly common scenarios. In this chapter, we showed how to improve
the performance of database selection algorithms in the case where database
content summaries are derived from relatively small document samples. Such
summaries are typically incomplete, and this can hurt the performance of da-
tabase selection algorithms. We showed that classification-aware database
selection algorithms can significantly improve the accuracy of the selection
decisions in the face of incomplete content summaries. Both the hierarchical
database selection algorithm of Section 4.1 and the adaptive, shrinkage-based
database selection algorithm of Section 4.2 perform better than their coun-
terparts that do not exploit database classification. Furthermore, we showed
that the shrinkage-based strategy outperforms the hierarchical database se-
lection algorithm: the hierarchical algorithm initially selects databases under
a single subtree of the classification hierarchy, so the hierarchical algorithm
fails to select the appropriate databases for queries that “cut across” multiple
categories. Shrinkage, on the other hand, “embeds” the category information
in the content summaries. Therefore, a “flat” database selection algorithm
can exploit the classification information without being constrained by the
classification hierarchy.

Appendix A: Estimating Score Distributions

Section 4.2 discussed how to estimate the “uncertainty” associated with a
database score for a query. Specifically, this estimate relied on the probability
P of the different possible query keyword frequencies. To compute P, we
assume independence of the words in the sample:

P =
n

∏
k=1

p(dk|sk)

where p(dk|sk) is the probability that wk occurs in dk documents in D given
that it occurs in sk documents in S. Using the Bayes rule, we have:

p(dk|sk) =
p(sk|dk)p(dk)

∑|D|
i=0 p(i)p(sk|i)

To compute p(sk|dk), we assume that the presence of each word wk follows a
binomial distribution over the S documents, with |S| trials and probability of
success dk

|D| for every trial. Then,
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p(sk|dk) =
(|S|

sk

) (
dk
|D|

)sk
(

1− dk
|D|

)|S|−sk

and

p(dk|sk) =
p(dk)

(
dk
|D|

)sk
(

1− dk
|D|

)|S|−sk

∑|D|
i=0

(
p(i)

(
i
|D|

)sk
(

1− i
|D|

)|S|−sk
)

Finally, to compute p(dk) we use the well-known fact that the distribution of
words in text databases tends to follow a power law [Man88]: approximately
c f γ words in a database have frequency f , where c and γ are database-specific
constants (c > 0, γ < 0). Then,

p(dk) =
cdγ

k

∑|D|
i=1 ciγ

=
dγ

k

∑|D|
i=1 iγ

Interestingly, γ = 1
B − 1, where B is a parameter of the frequency-rank dis-

tribution of the database [Ada02] and can be computed as described in Sec-
tion 3.3.

Appendix B: Estimating Score Variance

The adaptive algorithm in Figure 4.4 computes the mean and the variance of
the query score distribution for a database to decide whether to use shrink-
age for the database content summary. In Section 4.2, we outlined a method
for computing the mean and variance relatively efficiently for any arbitrary
database selection algorithm. This computation can be made even faster for
the large class of database selection algorithms that assume independence of
the query words. For example, bGlOSS, CORI, and LM, the database selec-
tion algorithms that we used in our experiments, belong to this class. For
these algorithms, we can calculate the mean and variance of the subscore as-
sociated with each query word separately, and then combine these word-level
mean and variance values to compute the final score mean and variance for
the query. We show the derivation of variance4 for bGlOSS and CORI. The
computation of variance for LM is similar to the one for bGlOSS.5

4The computation of the mean score is simpler and the derivation is analogous to the variance
computation presented here.

5In the computation of mean and variance for LM, we treat the values of p̂(w|G) as con-
stants, since the variance of the random variable p̂(w|G) is negligible compared to the variance
of p̂(w|D).
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Estimating Score Variance for bGlOSS

bGlOSS defines the score s(q, D) of a database D for a query q as:

s(q, D) = |D| · ∏
w∈q

p̂(w|D)

By definition of variance we have:

Var(s(q, D)) = E
[
s(q, D)2

]
− (E [s(q, D)])2

= E




(
|D| · ∏

w∈q
p̂(w|D)

)2

−

(
E

[
|D| · ∏

w∈q
p̂(w|D)

])2

= |D|2 · E




(
∏
w∈q

p̂(w|D)

)2

− |D|2 ·

(
E

[
∏
w∈q

p̂(w|D)

])2

= |D|2 · E




(
∏
w∈q

p̂(w|D)

)2

− |D|2 ·

(
E

[
∏
w∈q

p̂(w|D)

])2

Since the p(w|D)’s are assumed to be independent:

E




(
∏
w∈q

p̂(w|D)

)2

 = ∏

w∈q
E

[
p̂(w|D)2

]

(
E

[
∏
w∈q

p̂(w|D)

])2

=

(
∏
w∈q

E [ p̂(w|D)]

)2

Therefore:

Var (s(q, D)) = |D|2 ·

∏

w∈q
E

[
p̂(w|D)2

]
−

(
∏
w∈q

E [ p̂(w|D)]

)2



The distribution of p̂(w|D) and p̂(w|D)2 can be computed using the results
from Appendix A. The mean values of the distributions can be computed fast,
since there is no need to consider frequency combinations, unlike the case for
a generic database selection algorithm (see Section 4.2).
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Estimating Score Variance for CORI

CORI defines the score6 s(q, D) of a database D for a query q as:

s(q, D) = ∑
w∈q

0.4 + 0.6 · Tw · Iw

|q|

= 0.4 + 0.6 · ∑
w∈q

Tw · Iw

|q|

where

Tw =
p̂(w|D) · |D|

p̂(w|D) · |D|+ 50 + 150 · cw(D)
mcw

Iw = log
(

m + 0.5
c f (w)

)
/ log (m + 1.0)

and cf (w) is the number of databases containing w, m is the number of data-
bases being ranked, cw(D) is the number of words in D, and mcw is the mean
cw among the databases being ranked. For simplicity in our calculations be-
low, we assume that c f (w) and cw(D) are constants, since the variance of
their values is small compared to the other components of CORI formula. In
that case, Iw is also constant. Then, by definition of variance we have:

6When we compute the mean of the distribution of the CORI scores we ignore the constant
factor 0.4, to have a minimum score of 0.
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Var(s(q, D)) = E
[
(s(q, D))2

]
− (E [s(q, D)])2

= E




(
0.4 + 0.6 · ∑

w∈q

Tw · Iw

|q|

)2

−

(
E

[
0.4 + 0.6 · ∑

w∈q

Tw · Iw

|q|

])2

=
0.36
|q|2 · E




(
∑
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Tw · Iw

)2

− 0.36

|q|2 ·
(

E

[
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])2

=
0.36
|q|2

(
E

[
∑
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T2

w · I2
w

]
+ E


 ∑

wi ,wj∈q,i 6=j
Twi · Iwi · Twj · ·Iwj




−
(

∑
w∈q

E [Tw · Iw]

)2 )

=
0.36
|q|2

(
∑

w∈q
E

[
T2

w · I2
w

]
+ ∑

wi ,wj∈q,i 6=j
E

[
Twi · Iwi · Twj · ·Iwj

]

− ∑
w∈q

(
E [Tw · Iw]

)2
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wi ,wj∈q,i 6=j
E [Twi · Iwi ] · E

[
Twj · Iwj

] )

By assuming independence of the words w in the query, the variables Twi and
Twj are independent if i 6= j, and we have:

∑
wi ,wj∈q,i 6=j

E
[

Twi · Iwi · Twj · ·Iwj

]
= ∑

wi ,wj∈q,i 6=j
E [Twi · Iwi ] · E

[
Twj · Iwj

]

Therefore:

Var(s(q, D)) =
0.36
|q|2

(
∑

w∈q
I2
w ·

(
E

[
T2

w

]
− (E [Tw])2

))

Again, the distribution of the Tw and T2
w random variables can be computed

using the results from Appendix A. The mean values of the distributions can
be computed efficiently, since there is no need to consider frequency combi-
nations, unlike the case for a generic database selection algorithm (see Sec-
tion 4.2).
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Chapter 5

Updating Database Content
Summaries

So far, database selection research has largely assumed that databases are
static. However, real-life databases are not always static and the statistical
summaries that describe their contents need to be updated periodically to re-
flect database content changes. Defining schedules for updating the database
content summaries is a challenging task, because the rate of change of the
database contents might vary drastically from database to database. Further-
more, finding appropriate such schedules is important so that content sum-
maries are kept up to date but without overloading databases unnecessarily
to regenerate summaries that are already (at least close to) up to date.

In this chapter, we start by presenting an extensive study on how the content
of 152 real web databases evolved over a period of 52 weeks. Given that small
changes in the databases might not necessarily be reflected in the (relatively
coarse) content summaries, we examined how these summaries change over
time. Our study shows that summaries indeed change and that old sum-
maries eventually become obsolete, which then calls for a content summary
update strategy. To model content changes, we resort to the field of statistics
named “survival analysis.” Using the Cox proportional hazards regression
model [Cox72], we show that database characteristics can be used to predict
the pattern of change of the summaries. Finally, we exploit our change model
to develop summary update strategies that work well even under a resource-
constrained environment. Our strategies attempt to contact the databases
only when needed, thus minimizing the communication with the databases.
To conclude the discussion, we report the results of an extensive experimental
evaluation over our 152 real web databases, showing the effectiveness of our
update strategies.

In brief, the contributions of this chapter are as follows:
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• In Section 5.1, we report the results of our extensive experimental study
on how the content summaries of 152 real web databases evolved over
a period of 52 weeks.

• In Section 5.2, we use survival analysis techniques to discover database
properties that help predict the rate of change of database content sum-
maries.

• In Section 5.3, we show how to update content summaries by exploit-
ing our change model. The resulting strategies attempt to contact the
databases only when strictly needed, thus avoiding wasting resources
unnecessarily.

Finally, Section 5.4 provides further discussion and concludes the chapter.

5.1 Studying Content Changes of Real Text Data-
bases

One of the goals of this chapter is to study how text database changes are
reflected over time in the database content summaries. First, we discuss our
data set in detail (Section 5.1.1). Then, we report our study of the effect of
database changes on the content summaries (Section 5.1.2). The conclusions
of this study will be critical later in the chapter, when we discuss how to
model content summary change patterns.

5.1.1 Data for our Study

Our study and experiments involved 152 searchable databases, whose con-
tents were downloaded weekly from October 2002 through October 2003.
These databases have previously been used in a study of the evolution of
web pages [NCO04]. The databases were –roughly– the five top-ranked web
sites in a subset of the topical categories of the Google Directory, which, in
turn, reuses the hierarchical classification of web sites from the Open Direc-
tory Project. (Please refer to [NCO04] for more details on the rationale be-
hind the choice of these web sites.) From these web sites, we picked only
those sites that provided a search interface over their contents, which are
needed to generate sample-based content summaries. Also, since we wanted
to study content changes, we only selected databases with crawlable con-
tent, so that every week we can retrieve the databases’ full contents using
a crawler. A complete list of the sites included in our experiments is available
at http://webarchive.cs.ucla.edu/. Table 5.1 shows the breakdown of web
sites in the set by high-level DNS domain, where the misc category represents
a variety of relatively small domains (e.g., mil, uk, dk, and jp).

http://webarchive.cs.ucla.edu/
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Domain com edu gov misc org
% 47.3% 13.1% 17.1% 6.8% 15.7%

Table 5.1: Distribution of domains in our dataset.

We downloaded the contents of the 152 web sites every week over one year,
up to a maximum of 200,000 pages per web site at a time. (Only four web sites
were affected by this efficiency-motivated page-download limitation: hti.
umich.edu, eonline.com, pbs.org, and intelihealth.com.) Each weekly
snapshot consisted of three to five million pages, or around 65 GB before
compression, for a total over one year of almost 3.3 TB of history data.

We treat each web site as a database, and created –each week– the complete
content summary C(D) of each database D by downloading and processing
all of its documents. This data allowed us to study how the complete content
summaries of the databases evolved over time. In addition, we also studied
the evolution over time of approximate content summaries. For this, we used
FP-SVM (with specificity threshold τes = 0.25 and coverage threshold τec =
10) and QBS-Lrd to create every week an approximate content summary Ĉ(D)
of each database D.1 (See Section 3.6.1 for a justification of this choice.) For
conciseness, we now refer to FP-SVM as FPS and to QBS-Lrd as QBS.

5.1.2 Measuring Content Summary Change

We now turn to measuring how the database content summaries –both the
complete and approximate versions– evolve over time. For this, we resort
to a number of metrics of content summary similarity and quality from the
literature. We discuss these metrics and the results for the 152 web databases
next.

For our discussion, we refer to the “current” and complete content summary
of a database D as C(D), while O(D, t) is the complete summary of D as of
t weeks into the past. The O(D, t) summary can be considered as an (old)
approximation of the (current) C(D) summary, simulating the realistic sce-
nario where we extract a summary for a database D and keep it unchanged
for t weeks. In the following definitions, Wo is the set of words that appear
in O(D, t), while Wc is the set of words that appear in C(D). Values fo(w, D)
and fc(w, D) denote the document frequency of word w in O(D, t) and C(D),
respectively.

Recall: As we discussed in Chapter 3, an important property of the content
summary of a database is its coverage of the current database vocabulary. An
up-to-date and complete content summary always has perfect recall, but an
old summary might not, since it might not include, for example, words that

1To reduce the effect of sampling randomness in our experiments, we create five approximate
content summaries of each database each week, in turn derived from five document samples,
and report the various metrics in our study as averages over these five summaries.

hti.umich.edu
hti.umich.edu
eonline.com
pbs.org
intelihealth.com
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Figure 5.1: The recall of content summary O(D, t) with respect to the
“current” content summary C(D), as a function of time t and averaged
over each database D in the dataset.

appear only in new database documents. The unweighted recall (ur) of O(D, t)
with respect to C(D) is the fraction of words in the current summary that are
also present in the old summary: ur = |Wo∩Wc |

|Wc | . This metric gives equal weight
to all words and takes values from 0 to 1, with a value of 1 meaning that the
old content summary contains all the words that appear in the current content
summary, and a value of 0 denoting no overlap between the summaries. An
alternative recall metric, which gives higher weight to more frequent terms, is

the weighted recall (wr) of O(D, t) with respect to C(D): wr = ∑w∈Wo∩Wc fc(w,D)
∑w∈Wc fc(w,D) .

We will use analogous definitions of unweighted and weighted recall for a
sample-based content summary Ô(D, t) of database D obtained t weeks into
the past with respect to the current content summary C(D) for the same
database.

Figure 5.1 focuses on complete content summaries. Specifically, this figure
shows the weighted and unweighted recall of t-week-old summaries with
respect to the “current” summary, as a function of t and averaged over ev-
ery possible choice of “current” summary. In Figure 5.1 (as well as in all
subsequent figures), we report our results with a 95% confidence interval.
Predictably, both the weighted and unweighted recall values decrease as t
increases. For example, on average, 1-week-old summaries have unweighted
recall of 91%, while older, 25-week-old summaries have unweighted recall of
about 80%. The weighted recall figures are higher, as expected, but still signif-
icantly less than 1: this indicates that the newly introduced words have low
frequencies, but constitute a substantial fraction of the database vocabulary
as well.
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Figure 5.2: The weighted recall of “old” QBS-based content summaries
with respect to the “current” ones, as a function of the time T between
updates and averaged over each database D in the dataset, for different
scheduling policies (τ = 0.5).
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Figure 5.3: The weighted recall of “old” FPS-based content summaries
with respect to the “current” ones, as a function of the time T between
updates and averaged over each database D in the dataset, for different
scheduling policies (τ = 0.5).
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Figure 5.4: The unweighted recall of “old” QBS-based content sum-
maries with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the dataset, for
different scheduling policies (τ = 0.5).
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Figure 5.5: The unweighted recall of “old” FPS-based content sum-
maries with respect to the “current” ones, as a function of the time
T between updates and averaged over each database D in the dataset,
for different scheduling policies (τ = 0.5).
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The curves labeled “Naive” in Figures 5.2, 5.4, 5.3, and 5.5 show the corre-
sponding results for approximate, sample-based content summaries. (Please
ignore the other curves for now; we will explain their meaning in Section 5.3.)
As expected, the recall values for the sample-based summaries are substan-
tially smaller than the ones for the complete summaries. Also, the recall
values of the sample-based summaries do not change much over time, be-
cause the sample-based summaries are not too accurate to start with, and do
not suffer a significant drop in recall over time. This shows that the inherent
incompleteness of the sample-based summaries “prevails” over the incom-
pleteness introduced by time.

Another interesting observation is that recall figures initially decrease (slightly)
for approximately 20 weeks, then remain stable, and then, surprisingly, in-
crease, so that a 50-week old content summary has higher recall than a 20-
week old one, for example. This unexpected result is due to an interesting
periodicity: some events (e.g., “Christmas,” “Halloween”) appear at the same
time every year, allowing summaries that are close to being one year old to
have higher recall than their younger counterparts. This effect is only visible
in the sample-based summaries that cover only a small fraction of the da-
tabase vocabulary, and is not observed in the complete summaries, perhaps
because they are larger and are not substantially affected by a relatively small
number of words.

Precision: As we discussed in Chapter 3, another important property of the
content summary of a database is the precision of the summary vocabulary.
Up-to-date content summaries contain only words that appear in the database,
while older summaries might include obsolete words that appeared only in
deleted documents. The unweighted precision (up) of O(D, t) with respect to
C(D) is the fraction of words in the old content summary that still appear
in the current summary C(D): up = |Wo∩Wc |

|Wo | . This metric, like unweighted
recall, gives equal weight to all words and takes values from 0 to 1, with a
value of 1 meaning that the old content summary only contains words that
are still in the current content summary, and a value of 0 denoting no overlap
between the summaries. The alternative precision metric, which –just as in
the weighted recall metric– gives higher weight to more frequent terms, is the

weighted precision (wp) of O(D, t) with respect to C(D): wp = ∑w∈Wo∩Wc fo(w,D)
∑w∈Wo fo(w,D) .

We use analogous definitions of unweighted and weighted precision for a
sample-based content summary Ô(D, t) of a database D with respect to the
correct content summary C(D).

Figure 5.6 focuses on complete content summaries. Specifically, this figure
shows the weighted and unweighted precision of t-week-old summaries with
respect to the “current” summary, as a function of t and averaged over every
possible choice of “current” summary. Predictably, both the weighted and
unweighted precision values decrease as t increases. For example, on aver-
age, a 48-week-old summary has unweighted precision of 70%, showing that
30% of the words in the old content summary do not appear in the database
anymore.
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Figure 5.6: The precision of content summary O(D, t) with respect to
the “current” content summary C(D), as a function of time t and aver-
aged over each database D in the dataset.

The curves labeled “Naive” in Figures 5.7, 5.9, 5.8, and 5.10 show the corre-
sponding results for approximate, sample-based content summaries. (Again,
please ignore the other curves for now; we will explain their meaning in Sec-
tion 5.3.) As expected, the precision values decrease over time, and do so
much faster than their corresponding recall values (Figures 5.2 and 5.4). For
example, almost 20% of the words in a 15-week-old QBS-based content sum-
mary are absent from the database. For the precision results, the periodicity
that appeared in the recall figures is not visible: the sample-based content
summaries contain many more “obsolete” words that do not appear in the
database anymore. Hence, a small number of words that appear periodically
cannot improve the results.

Kullback-Leibler Divergence: As we discussed in Chapter 3, precision and
recall measure the accuracy and completeness of the content summaries, based
only on the presence of words in the summaries. However, these metrics do
not capture the accuracy of the frequency of each word as reported in the
content summary. For this, the Kullback-Leibler divergence [Jel99] of O(D, t)
with respect to C(D) (KL for short) calculates the “similarity” of the word
frequencies in the old content summary O(D, t) against the “current” word
frequencies in C(D): KL = ∑w∈Wo∩Wc pc(w|D) · log pc(w|D)

po(w|D) , where pc(w|D) =
fc(w,D)

∑w′∈Wo∩Wc fc(w′ ,D) is the probability of observing w in C(D), and po(w|D) =
fo(w,D)

∑w′∈Wo∩Wc fo(w′ ,D) is the probability of observing w in O(D, t). The KL diver-

gence metric takes values from 0 to infinity, with 0 indicating that the two
content summaries being compared are equal. Intuitively, KL divergence mea-
sures how many bits are necessary to encode the difference between the two
distributions.
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Figure 5.7: The weighted precision of “old” QBS-based content sum-
maries with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the dataset, for
different scheduling policies (τ = 0.5).
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Figure 5.8: The weighted precision of “old” FPS-based content sum-
maries with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the dataset, for
different scheduling policies (τ = 0.5).



132 5.1 Studying Content Changes of Real Text Databases

0 5 10 15 20 25 30 35 40 45 50

T

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

U
nw

ei
gh

te
d 

P
re

ci
si

on

 K, tau

 K, size, tau

 Size, tau

 Naive

±
 95% Confidence Interval


Figure 5.9: The unweighted precision of “old” QBS-based content sum-
maries with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the dataset, for
different scheduling policies (τ = 0.5).
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Figure 5.10: The unweighted precision of “old” FPS-based content sum-
maries with respect to the “current” ones, as a function of the time T
between updates and averaged over each database D in the dataset, for
different scheduling policies (τ = 0.5).
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Figure 5.11: The KL divergence of content summary O(D, t) with re-
spect to the “current” content summary C(D), as a function of time t
and averaged over each database D in the dataset.

Figure 5.11 focuses on complete content summaries and shows that the KL
divergence of old content summaries O(D, t) increases as t increases. This
confirms the previously observed results and shows that the word frequency
distribution changes substantially over time. The curve labeled “Naive” in
Figures 5.12 and 5.13 show the KL divergence for sample-based content sum-
maries of increasing age. (Again, please ignore the other curves for now; we
will explain their meaning in Section 5.3.) The KL divergence of the old sum-
maries increases with time, indicating that approximate content summaries
become obsolete just as their complete counterparts do.

Conclusion: We studied how content summaries of text databases evolve over
time. We observed that the quality of content summaries (both complete and
sample-based) deteriorates as they become increasingly older. Therefore, it is
imperative to have a policy for periodically updating the summaries to reflect
the current contents of the databases. We turn now to this important issue
and show how we can use “survival analysis” for this purpose.
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Figure 5.12: The KL divergence of “old” QBS-based content summaries
with respect to the “current” ones, as a function of the time T between
updates and averaged over each database D in the dataset, for different
scheduling policies (τ = 0.5).
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Figure 5.13: The KL divergence of “old” FPS-based content summaries
with respect to the “current” ones, as a function of the time T between
updates and averaged over each database D in the dataset, for different
scheduling policies (τ = 0.5).
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5.2 Predicting Content Summary Change Frequency

In the previous section, we established the need for updating database con-
tent summaries as the underlying text databases change. Unfortunately, up-
dating a content summary involves a non-trivial overhead: as discussed, the
content summaries of hidden-web text databases are constructed by querying
the databases, while the summaries of crawlable databases are constructed by
downloading and processing all the database documents. Therefore, in order
to avoid overloading the databases unnecessarily, it is important to schedule
updates carefully. In this section, we present our “survival analysis” modeling
approach for deciding when to update content summaries. First, Sections 5.2.1
and 5.2.2 review the necessary background on survival analysis and the Cox
regression model from the literature [Mar03]. Then, Section 5.2.3 shows how
we can use this material for our own scenario, to model content summary
changes.

5.2.1 Survival Analysis

Survival analysis is a collection of statistical techniques that help predict the
time until an event occurs [Mar03]. These methods were initially used to
predict the time of survival for patients under different treatments, hence
the name “survival analysis.” For the same reason the “time until an event
occurs” is also called survival time. For our purposes, the survival time is
the number of weeks t such that an old database content summary O(D, t) is
“sufficiently different” from the current summary C(D). (We formally define
the survival time of a database in Section 5.2.3.)

Survival times can be modeled through a survival function S(t) that captures
the probability that the survival time of an object is greater than or equal to
t. In the survival analysis literature, the distribution of S(t) is also described
in terms of a hazard function h(t), which is the “rate of failure” at time t,

conditional on survival until time t: h(t) = −
dS(t)

dt
S(t) . A common modeling

choice for S(t) is the exponential distribution, where S(t) = e−λt, and so the
hazard function is constant over time (h(t) = λ). A generalization of the
exponential distribution is the Weibull distribution, where S(t) = e−λtγ

, and so
the hazard function varies over time (h(t) = λγtγ−1).2

We could use the exponential distribution to model the survival time of
a database. This choice is reinforced by recent findings that indicate that
the exponential function is a good model to describe changes in web docu-
ments [BC00b, CGM03]. However, we will see in Section 5.2.3 that the expo-
nential distribution does not accurately describe changes for summaries of
web databases, so we will use the Weibull distribution instead.

2The exponential distribution corresponds to the case where γ = 1.
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As described so far, the survival function S(t) and the hazard function h(t)
are used to describe a single database, and are not “instantiated” since we do
not know the values of the configuring parameters. Of course, it is important
to estimate the parameters of the survival function S(t) for each database, to
have a concrete, database-specific change model. Even more imperative is to
discover predictor variables that can influence the survival times. For example,
when analyzing the survival times of patients with heart disease, the weight
of a patient is a predictor variable and can influence the survival time of
the patient. Analogously, we want to predict survival times individually for
each database, according to its characteristics. Next, we describe the Cox
proportional hazards regression model that we use for this purpose.

5.2.2 Cox Proportional Hazards Regression Model

The Cox proportional hazards regression model [Cox72] is a technique widely
used in statistics for discovering important variables that influence survival
times. It is a non-parametric model, because it makes no assumptions about
the nature or shape of the hazard function. The only assumption is that the
logarithm of the underlying hazard rate is a linear3 function of the predictor
variables.

Let x be a predictor variable, and xA and xB be the values of that variable
for two databases A and B, respectively. Under the Cox model, the hazard
functions hA(t) and hB(t) can be expressed for databases A and B as:

hA(t) = eβxA h0(t) ⇒ ln hA(t) = ln h0(t) + βxA (5.1a)

hB(t) = eβxB h0(t) ⇒ ln hB(t) = ln h0(t) + βxB (5.1b)

where h0(t) is a baseline hazard function, common for all the members of the
population. The Cox model can be generalized for n predictor variables:
log h(t) = log h0(t) + ∑n

i=1 βixi, where the xi’s are the predictor variables, and
the βi’s are the model coefficients. The algorithm presented by Cox [Cox72]
shows how to compute the βi values.

The Cox model, as presented so far, seems to solve the same problem ad-
dressed by multiple regression. However, the dependent variable (survival
time) in our case is not normally distributed, but usually follows the expo-
nential or the Weibull distribution –a serious violation for ordinary multiple
regression. Another important distinction is the fact that the Cox model effec-
tively exploits incomplete or “censored” data, from cases that “survived” the
whole study period. Excluding these cases from the study would seriously
affect the result, introducing a strong bias in the resulting model. Those obser-
vations are called censored observations and contain only partial information,

3The “linearity” or “proportionality” requirement is essentially a “monotonicity” requirement
(e.g., the higher the weight of a patient, the higher the risk of heart attack). If a variable monoton-
ically affects the hazard rate, then an appropriate transformation (e.g., log(·)) can make its effect
linear.
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indicating that there was no failure during the time of observation. The Cox model
effectively uses the information provided from censored cases. (For more
information, see [Cox72].)

The Cox proportional hazards model is one of the most general models for
working with survival data, since it does not assume any specific baseline
hazard function. This model allows the extraction of a “normalized” hazard
function h0(t) that is not influenced by predictor variables. This allows for
easier generalization of the results, since h0(t) is not dependent on the distri-
bution of the predictor variables in the dataset used to extract h0(t). The only
requirement for the applicability of Cox’s model is that the predictor variables
follow the “proportional hazard” (PH, or linearity) assumption, which means
that for two individual groups A and B the hazard ratio hA(t)

hB(t) is constant over
time.

An interesting variation of the Cox model that overcomes the PH assumption
is the stratified Cox model [SCN81], which is used to account for variables that
do not satisfy the proportionality assumption. In this case, the variables that
do not satisfy the proportionality assumption are used to split the dataset into
different “strata.” The βi Cox coefficients remain the same across the different
strata, but each stratum now has different baseline functions h0(t).

Next, we describe how we use the Cox regression model to represent changes
in text database content summaries.

5.2.3 Using Cox Regression to Model Content Summary Changes

Before using any survival analysis technique for our problem, we need to
define “change.” A straightforward definition is that two content summaries
C(D) and O(D, t) are “different” when they are not identical. However, even
a small change in a single document in a database will probably result in a
change in its content summary, but such change is unlikely to be of impor-
tance for database selection. Therefore, we relax this definition and say that
two content summaries are different when KL > τ (see Section 5.1.2 for the
definition of KL divergence), where τ is a “change sensitivity” threshold.4

Higher values of τ result in longer survival times and the exact value of τ
should be selected based on the characteristics of the database selection algo-
rithm of choice. We will see how we can effectively use the Cox model to
incorporate τ in our change model. Later, in Section 5.3, we show that we can
define update schedules that adapt to the chosen value of τ.

Definition 16: Given a value of the change sensitivity threshold τ > 0, the survival
time of a database D at a point in time –with associated “current” content summary

4We use KL divergence for our change definition (as opposed to precision or recall) because KL
depends on the whole word-frequency distribution. As our later experiments show, an update
policy derived from the KL-based change definition improves not only the KL divergence but
also precision and recall.
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C(D)– is the smallest time t for which the KL divergence of O(D, t) with respect to
C(D) is greater than τ.

Computing Survival Times: Using the study of Section 5.1 as well as Defini-
tion 16, we computed the survival time of each content summary for different
values of threshold τ. For some databases, we did not detect a change within
the period of the study. As explained in Section 5.2.2, these “censored” cases
are still useful since they provide evidence that the content summary of a
database with the given characteristics did not change within the allotted time
period and for the threshold τ of choice. The result of our study is a set of
survival times, some marked as censored, that we use as input to the Cox
regression model.

Feature Selection: After extracting the survival times, we select the data-
base features that we pass as parameters to the Cox model. We use two sets
of features: a set of “current” features and a set of “evolution” features. The
current features are characteristics of the database at a given point in time. For
example, the topic of the database and its DNS domain are current features of
a database. On the other hand, we extract the evolution features by observing
how the database changes over a (training) time period. For the remainder
of the discussion, we focus on the features for the important case of approx-
imate, sample-based content summaries. Analogous features can be defined
for crawlable databases, for which we can extract complete summaries.

The initial set of current features that we used was:

• The threshold τ.

• The logarithm of the estimated size of the database, where we esti-
mate the size of the database using the “sample-resample” method
from [SC03].

• The number of words in the current sample Ĉ(D).

• The topic of each database, defined as the top level category under
which the database is classified in the Open Directory. This is a categor-
ical variable with 16 distinct values (e.g., “Arts,” “Sports,” and so on).
We encoded this variable as a set of dummy binary variables: each vari-
able has the value 1 if the database is classified under the corresponding
category, and 0 otherwise.

• The domain of the database, which is a categorical variable with five
distinct values (com, org, edu, gov, misc). We encoded this variable as a
set of 5 binary variables.

To extract the set of evolution features, we retrieved sample-based content
summaries from each database every week over a period of 10 weeks. Then,
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for each database we compared every pair of approximate summaries that were
extracted exactly k weeks apart (i.e., on weeks t and t + k) using the precision,
recall, and KL divergence metrics. Specifically, the features that we computed
were:

• The average KL divergence κ1, . . . , κ9 between summaries extracted with
time difference of 1, . . . , 9 weeks.

• The average weighted and unweighted precision of summaries extracted
with time difference of 1, . . . , 9 weeks.

• The average weighted and unweighted recall of summaries extracted
with time difference of 1, . . . , 9 weeks.

After selecting the initial set of features, we trained the Cox model using
the variables indicated above. We validated the results using leave-one-out
cross validation.5 The results of the initial run indicated that, from the current
features, the number of words and the topic of the database are not good
predictor variables, while from the evolution features the KL features are good
predictors, and strongly and positively correlated with each other. While pre-
cision and recall are not good predictor variables for QBS, they are for FPS.
This result is not surprising: FPS usually issues6 the same set of queries each
time that it samples a particular database. If the database has not changed,
then the returned documents are the same and the precision and recall met-
rics have high values. If the database has changed, then the returned set of
documents is different, resulting in low precision and recall numbers. For
QBS this property does not hold: since QBS issues a potentially different set
of queries each time that it samples a particular database, the documents in
the sample may be completely different, even if the database has not changed.
Therefore, precision and recall are not good predictor variables under QBS.

Given these results, we decided to drop the number of words and the topic
variables from the current set, keeping only the threshold τ, the database size,
and the domain. From the evolution set we dropped the recall and precision
features. Despite the fact that recall and precision are good predictor variables
for FPS, their importance in the presence of the KL features is negligible. Also,
from the KL features we kept only the κ1 feature: given its presence, features
κ2 through κ9 were largely redundant. Furthermore, we reduced the training
time from 10 to three weeks. To examine whether any of the selected features
–other than threshold τ, which we always keep– are redundant, we trained
Cox using (a) size and τ; (b) κ1 and τ; and (c) κ1, size, and τ. We describe our
findings next.

Training the Cox Model: After the initial feature selection, we trained the
Cox model again. The results indicated that all the features that we had se-

5Since each database generates multiple survival times, we leave out one database at a time for
the cross-validation.

6The queries are always the same if the database classification does not change.
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Method Features βs βκ βτ

- size, τ 0.179 - -1.313
QBS κ1, τ - 8.3 -1.308

κ1, size, τ 0.094 6.762 -1.305
FPS κ1, τ - 14.765 -1.24

κ1, size, τ 0.135 10.143 -1.329

Table 5.2: The coefficients of the Cox model, when trained for various
sets of features and for different sampling methods for computing the
κ1 feature.

lected are good predictor variables7 and strongly influence the survival time
of the extracted summaries. However, the domain variable did not satisfy
the proportionality assumption, which is required by the Cox model (see Sec-
tion 5.2.2): the hazard ratio between two domains was not constant over time.
Hence, we resorted to the stratified Cox model, stratifying on domain.8

The result of the training was a set of coefficients βs, βκ , and βτ for features
size, κ1, and τ, respectively. We show the Cox coefficients that we obtained
in Table 5.2. The positive values of βs and βκ indicate that larger databases
are more likely to change than smaller ones and that databases that changed
during training are more likely to change in the future than those that did not
change. In contrast, the negative value for βτ shows that –not surprisingly–
higher values of τ result in longer survival times for content summaries.

Given the results of the analysis, for two databases D1 and D2 from the same
domain, we have:

ln S1(t) = exp(βs ln(|D1|) + βκκ11 + βττ1) · ln S0(t)
ln S2(t) = exp(βs ln(|D2|) + βκκ12 + βττ2) · ln S0(t)

where S0(t) is the baseline survival function for the respective domain. The
baseline survival function corresponds to a “baseline” database D with size
|D| = 1 (i.e., ln(|D|) = 0), κ1 = 0, and τ = 0.

Under the Cox model, the returned baseline survival functions remain un-
specified and are defined only by a set of values S0(t1), S0(t2), . . . , S0(tn). In
our experiments, we had five baseline survival functions, one for each domain
(i.e., com, edu, org, gov, misc). To fit the baseline survival functions, we as-
sumed that they follow the Weibull distribution (see Section 5.2.1), which has
the general form S(t) = e−λtγ

. We applied curve fitting using a least-squares
method (in particular the Levenberg-Marquardt method [Mor77]) to estimate
the parameters of the Weibull distribution for each domain. For all estimates,
the statistical significance was at the 0.001% level. Table 5.3 summarizes the
results.

7For all models, the statistical significance is at the 0.001% level according to the Wald statis-
tic [Mar03].

8This meant that we had to compute separate baseline hazard functions for each domain.
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Method Features Domain λdom γdom
com 0.0211 0.844
edu 0.0392 0.578

- size, τ gov 0.0193 0.701
misc 0.0163 1.072
org 0.0239 0.723
com 0.0320 0.886
edu 0.0774 0.576

κ1, τ gov 0.0245 0.795
misc 0.0500 1.014

QBS org 0.0542 0.715
com 0.0180 0.901
edu 0.0205 0.585

κ1, size, τ gov 0.0393 0.780
misc 0.0236 1.050
org 0.0274 0.724
com 7.59 ×10−5 0.743
edu 1.20 ×10−4 0.641

κ1, τ gov 5.92 ×10−5 0.722
misc 6.69 ×10−5 0.920

FPS org 7.46 ×10−5 0.728
com 2.65 ×10−4 0.787
edu 3.40 ×10−4 0.670

κ1, size, τ gov 1.85 ×10−4 0.710
misc 1.90 ×10−4 1.020
org 3.74 ×10−4 0.764

Table 5.3: The parameters for the baseline survival functions for the five
domains. The baseline survival functions describe the survival time of a
database D in each domain with size |D| = 1 (ln(|D|) = 0), with average
distance between the sample summaries κ1 = 0 (computed using QBS
or FPS) and for threshold τ = 0.

An interesting result is that the survival functions do not follow the exponen-
tial distribution (γ = 1). Previous studies [CGM03] indicated that individual
web documents have lifetimes that follow the exponential distribution. Our re-
sults, though, indicate that content summaries, with aggregate statistics about
sets of documents, change more slowly. Another interesting result is that the
λdom values are significantly lower for FPS than for QBS. This result is due to
the significantly higher weight assigned to the κ1 feature when FPS is used.
As discussed above, FPS retrieves the same documents each time it samples
a database, as long as the database does not change. Hence, any changes in
the retrieved documents are a strong signal that the database has changed,
while this is not the case for QBS. Therefore, κ1 has a higher weight for FPS,
resulting in baseline functions with significantly lower λdom values than their
QBS counterparts.
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Modeling Conclusions: We have presented a statistical analysis of the sur-
vival times of database content summaries. We used Cox regression analysis
to examine the effect of different variables in the survival time of database
content summaries and showed that the survival times of content summaries
follow the Weibull distribution, in most cases with γ < 1 (i.e., they tend to
remain unchanged for longer time periods as their age increases). We sum-
marize our results in the following definition:

Definition 17: The function Si(t) that gives the survival function for a database Di
is:

Si(t) = exp (−λitγdom) , with (5.2a)

λi = λdom

(
|Di|βs · exp (βκκ1i) · exp (βττi)

)
(5.2b)

where |Di| is the size of the database, κ1i is the KL divergence of the samples obtained
during the training period, βs, βκ , and βτ are the Cox coefficients from Table 5.2,
λdom and γdom are the domain-specific constants from Table 5.3, and τi is the value
of the change threshold for Di (Definition 16).

Definition 17 provides a concrete change model for a database D that is spe-
cific to the database characteristics and to the change sensitivity, as controlled
by the threshold τ. An interesting result is that summaries of large databases
change more often than those of small databases, as indicated by the posi-
tive value of βs, which corresponds to the database size. Figure 5.14 shows
the shape of S(t) for different domains, for a hypothetical database D with
|D| = 1000, κ1 = 0.1 (computed using QBS), and for τ = 0.5. This figure
shows that content summaries tend to vary substantially across domains (e.g.,
compare the “misc” curve against the “gov” curve).
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Figure 5.14: The survival function S(t) for different domains (|D| =
1, 000, τ = 0.5, κ1 = 0.1, QBS sampling).

5.3 Scheduling Updates

So far, we have described how to compute the survival function S(t) for a text
database. In this section, we describe how we can exploit S(t) to schedule
database content summary updates and contact each database only when nec-
essary. Specifically, we first describe the theory behind our scheduling policy
(Section 5.3.1). Then, we present the experimental evaluation of our policy
(Section 5.3.2), which shows that sophisticated update scheduling can im-
prove the quality of the extracted content summaries in a resource-restricted
environment.

5.3.1 Deriving an Update Policy

A metasearcher may provide access to hundreds or thousands of databases
and operate under limited network and computational resources. To optimize
the overall quality of the content summaries, the metasearcher has to carefully
decide when to update each of the summaries, so that they are acceptably up
to date during query processing.

To model the constraint on the workload that a metasearcher might handle,
we define F as the average number of content summary updates that the me-
tasearcher can perform in a week. Then, under a Naive strategy that allocates
updates to databases uniformly, T = n

F represents the average number of
weeks between two updates of a database, where n is the total number of da-
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Di λi T = 40 T = 10
tomshardware.com 0.088 46 weeks 5 weeks
usps.com 0.023 34 weeks 12 weeks

Table 5.4: Optimal content-summary update frequencies for two data-
bases.

tabases. For example, T = 2 weeks means that the metasearcher can update
the content summary of each database every two weeks, on average.

As we have seen in Section 5.2.3, the rate of change of the database contents
may vary drastically from database to database, so the Naive strategy above
is bound to allocate updates to databases suboptimally. Thus, the goal of
our update scheduling is to determine the update frequency fi for each data-
base Di individually, in such a way that the function ∑n

i=1 Si(t) is maximized,
while at the same time not exceeding the number of updates allowed. In this
case, we maximize the average probability that the content summaries are
up to date. One complication is that the survival function Si(t) changes its
value over time, so different update scheduling policies may be considered
“optimal” depending on when Si(t) is measured. To address this issue, we as-
sume that the metasearcher wants to maximize the time-averaged value of the
survival function, given as: S̄ = limt→∞

1
t
∫ t

0 ∑n
i=1 Si(t)dt. This formulation

of the scheduling problem is similar to that in [CGMP00] for the problem of
keeping the index of a search engine up to date. In short, we formulate our
goal as the following optimization problem.

Problem 1: Find the optimal update frequency fi for each database Di such that S̄
is maximized under the constraint ∑n

i=1 fi = n
T .

Given the analytical forms of the Si(t) functions in the previous sections, we
can solve this optimization problem using the Lagrange-multiplier method (as
shown for example in [CGMP00, OW02]). Cho et al. [CGMP00] investigated
a special case of this optimization problem when γ = 1 (i.e., when the rate of
change is constant over time), and observed the following:

1. When λi (which can be interpreted as denoting “how often the content
summary changes”) is small relative to the constraint F, the optimal
revisit frequency fi becomes larger as λi grows larger.

2. When λi is large compared to the resource constraint F, the optimal
revisit frequency fi becomes smaller as λi grows larger.

In our solution to the above generalized optimization problem, we also ob-
served similar trends even when γ 6= 1 (i.e., when the rate of change varies
over time). As an example, in Table 5.4 we show the optimal update frequen-
cies for the content summaries of two databases, tomshardware.com and usps.

tomshardware.com
usps.com
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com. We can see that, when T is small (T = 10), we update tomshardware.com
more often than usps.com, since λi is larger for tomshardware.com. How-
ever, when T is large (T = 40) the optimal update frequencies are reversed.
The scheduling algorithm decides that tomshardware.com changes “too fre-
quently” and is not beneficial to allocate more resources to try to keep it up
to date. Therefore, the algorithm decides to update the content summary
from tomshardware.com less frequently, and instead focus on databases like
usps.com that can be kept up to date. This trend holds across domains and
across values of γ.

5.3.2 Experimental Results

In Section 5.2.3, we showed how to compute the form and parameters of the
survival function Si(t), which measures the probability that the summary of
a database Di is up to date t weeks after it was computed. Based on Cox’s
model, we derived a variety of models that compute Si(t) based on three
different sets of features (see Tables 5.2 and 5.3). Now, we use these models
to devise three update policies, using the approach from Section 5.3.1 and the
following feature sets:

• κ1, size, τ: We use all the available features.

• size and τ: We do not use the history of the database, i.e., we ignore the
evolution feature κ1 and we use only the database size and the change
sensitivity threshold τ.

• κ1 and τ: We use only the history of the database and the threshold τ.
We consider this policy to examine whether we can work with databases
without estimating their size.9

We also consider the Naive policy, discussed above, where we uniformly up-
date all summaries every T weeks.10

Quality of Content Summaries under Different Policies: We examine the
performance of each updating policy, by measuring the average (weighted
and unweighted) precision and recall, and the average KL divergence of the
generated approximate summaries. We consider different values of T, where T
is the average number of weeks between updates.

Figures 5.2, 5.4, 5.3, and 5.5 show the average weighted and unweighted re-
call of the approximate summaries, obtained under the scheduling policies
that we consider. The results indicate that, by using any of our policies, we

9The size estimation method that we use [SC03] relies on the database returning the number
of matches for each query. This method becomes problematic for databases that do not report
such numbers with the query results.

10The results presented in this paper focus on sample-based content summaries. We also ran
analogous experiments for the complete content summaries, and the results were similar.

usps.com
usps.com
tomshardware.com
usps.com
tomshardware.com
tomshardware.com
tomshardware.com
usps.com
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Figure 5.15: The precision of the updates performed by the different
scheduling algorithms, as a function of the average time between up-
dates T and for τ = 0.5, where the κ1 feature is computed using QBS-
based summaries.

can keep the recall metrics almost stable, independently of the resource con-
straints. Figures 5.7, 5.9, 5.8, and 5.10 show the average weighted and un-
weighted precision of the approximate summaries. Again, our three schedul-
ing policies demonstrate similar performance, and they are all significantly
better than the Naive policy. The difference with the Naive policy is statisti-
cally significant, even when the summaries are updated relatively frequently
(i.e., even for small values of T). Finally, Figures 5.12 and 5.13 show that our
updating policies keep the average KL divergence of the approximate sum-
maries almost constant even for a large number of weeks T between updates.

An interesting observation is that the three policies that we propose demon-
strate minimal differences in performance, and these differences are not sta-
tistically significant. Additionally, all techniques are significantly better than
the Naive policy. This indicates that it is possible to work with a smaller set of
features, without decreasing performance. For example, we may ignore the
evolution feature κ1 and avoid computing the history of a database, which
involves frequent sampling of the database for a (small) period of time.

Precision of Update Operations: To measure how “precise” the updates
scheduled by our policies are, we define an update as “precise” if it contacts a
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Figure 5.16: The precision of the updates performed by the different
scheduling algorithms, as a function of the average time between up-
dates T and τ = 0.5, where the κ1 feature is computed using FPS-based
summaries.

database when the new summary of the database is different from the existing
summary according to the definition of change in Section 5.2.3. We measured
the precision of the update operations as the ratio of the precise updates
over the total number of updates performed. Figures 5.15 and 5.16 show the
precision results as a function of T and for τ = 0.5, where the κ1 feature is
computed using QBS- and FPS-based summaries, respectively. For this value
of τ and for the databases in our dataset, very low values of T (i.e., T < 10)
are unnecessary, since then the databases are contacted too often and before
they have changed sufficiently. A decrease in the value of τ cause the curves
to “move” towards the left: the summaries change more frequently and then
the updates become more precise. For example, for τ = 0.25 and T = 10,
precision is approximately 40%, while for T = 25 it is approximately 80%.

Interestingly, the update precision can be predicted analytically, using the tar-
get function S̄ described in Section 5.3.1. The average probability of survival
(our target function) corresponds in principle to the percentage of non-precise
updates. This result is intuitive, since our target function essentially encodes
the probability that the summary of the database has changed. Therefore,
during scheduling, it is possible to select a value of T that achieves (approxi-
mately) the desired update precision.
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Finally, the results in Figures 5.15 and 5.16 indicate that the Naive policy –
as expected– has worse update precision than the other policies. Also, Fig-
ure 5.16 shows that the policy that uses FPS to compute κ1 and does not
use the size feature has significantly higher precision than the other tech-
niques: the κ1 feature computed using FPS is then a better predictor than
the other variables, verifying the results of Cox regression, which returned a
high weight for βκ for the given policy (see Table 5.2).

Conclusion: As a general conclusion, we have observed that our schedul-
ing policies allow for good quality of the extracted content summaries, even
under strict constraints on the allowable update frequency. Also, our mod-
eling approach helps predict the precision of the update operations, in turn
allowing the metasearcher to tune the update frequency to efficiently keep
the content summaries up to date.

5.4 Conclusions

In this chapter, we presented a study –over 152 real web databases– of the
effect of time on the database content summaries on which metasearchers
rely to select appropriate databases where to evaluate keyword queries. Pre-
dictably, the quality of the content summaries deteriorates over time as the
underlying databases change, which highlights the importance of update
strategies for refreshing the content summaries. We described how to use
survival analysis techniques, in particular how to exploit the Cox propor-
tional hazards regression model, for this update problem. We showed that
the change history of a database can be used to predict the rate of change of
its content summary in the future, and that summaries of larger databases
tend to change faster than summaries of smaller databases. Finally, based
on the results of our analysis, we suggested update strategies that work well
in a resource-constrained environment. Our techniques adapt to the change
sensitivity desired for each database, and contact databases selectively –as
needed– to keep the summaries up to date while not exceeding the resource
constraints.
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Chapter 6

Related Work

This chapter reviews the literature relevant to the topics covered in this thesis.
Section 6.1 outlines research related to document and database classification.
Section 6.2 discusses work on database selection. Section 6.3 discusses meth-
ods related to the content summary construction techniques presented in this
thesis. Section 6.4 summarizes work related to the evolution of text databases
and relevant update algorithms. Finally, Section 6.5 outlines various appli-
cations of query probing, a technique that we used extensively in this thesis
both for database classification and for content summary construction.

6.1 Document and Database Classification

While work on text database classification is relatively recent, there has been
substantial on-going research in text document classification for a number of
years. Such research includes the development and application of a num-
ber of learning algorithms to categorize text documents. RIPPER [Coh96],
which we used in our work, is an example of a rule-based classifier. Many
other methods for learning classification rules based on text documents have
been explored over the years [ADW94]. Furthermore, many other formalisms
for document classifiers have been the subject of previous work, including
the Rocchio algorithm based on the vector space model for document re-
trieval [Roc71], linear classification algorithms [LSCP96], Bayesian networks [MN98],
and, more recently, Support Vector Machines [Joa98], to name just a few.
Several comparative studies among text classifiers (e.g., [SHP95, DPHS98,
YL99]) reflect the relative strengths and weaknesses of these methods. Se-
bastiani [Seb02] presents an extensive overview of the state of the art in text
classification.

As we discussed in Chapters 2 and 3, our QProber and Focused Probing tech-
niques are built on top of document classifiers, and we have reported ex-
periments using RIPPER, Support Vector Machines, C4.5, and Naive Bayes
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classifiers. Our techniques can easily leverage and incorporate any ongoing
advances in document classification. As we also discussed, we need a way of
extracting rules (which are then easily turned into queries) for those classifica-
tion methods that do not explicitly represent their output as rules. Our exper-
iments of Chapters 2 and 3 used the C4.5RULES algorithm [Qui92] to derive
rules from C4.5. Also, we developed a rule extraction method for linear clas-
sifiers, such as Naive Bayes and Support Vector Machines with linear kernel
functions (Section 2.2.3). Craven developed Trepan [Cra96], which extracts
a comprehensible set of rules from a neural network. Flake et al. [FGLG02]
describe an algorithm for extraction of rules from nonlinear Support Vector
Machines. The ongoing research in rule extraction can be directly leveraged
to adapt different learning models for use with QProber and Focused Probing.

For the task of text database classification, Gauch et al. [GWG96] manually con-
struct query probes to facilitate the classification of text databases. Dolin et
al. [DAE99] used Latent Semantic Indexing [DDL+90] with metrics similar to
specificity and coverage to categorize collections of documents. The crucial dif-
ference with QProber is that the documents in the collection were available for
inspection and not hidden behind search interfaces. Wang et al. [WMY00] pre-
sented the Title-based Querying technique that we summarized in Section 2.3.2.
Our experimental evaluation showed that QProber significantly outperforms
Title-based Querying, both in terms of efficiency and effectiveness. Cope et
al. [CCH03] presented a technique for classifying web forms as search inter-
faces or not. This technique is complementary to QProber and can be used as
a filtering step before applying QProber to a newly found web search form, to
ensure that the form is indeed an interface to a hidden-web text database.

6.2 Database Selection

A large body of work has been devoted to distributed information retrieval,
or metasearching, over text databases. As we discussed, a crucial task for a
metasearcher is database selection, which requires that the metasearcher have
summaries of the database contents.

Early database selection techniques relied on human-generated database de-
scriptions. WAIS [KMG+93] uses such descriptions and ranks databases ac-
cording to their similarity to the queries. In Search Broker [MB97], each
database is manually tagged with two or three category index descriptors.
At query time, users specify the query category and then Search Broker se-
lects the appropriate databases. Chakravarthy and Haase [CH95] use Word-
net [Fel98] to complement the manually assigned keywords that are used to
describe each database for database selection.

More robust database selection approaches rely on statistical metadata about
the contents of the databases, generally following the type of content sum-
maries of Chapters 3 and 4. CORI [CLC95, XC98] uses inference networks
together with this kind of content summaries to select the best databases for
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a query. (We used CORI in our experiments of Chapter 4.) GlOSS [GGMT99]
uses content summaries and selects databases for a query according to some
notion of goodness for a query. GlOSS can choose among a variety of defini-
tions of goodness, some of which depend on the retrieval model supported by
the databases. (We used bGlOSS, a variant of GlOSS originally introduced for
boolean databases, in our experiments of Chapter 4.) Yuwono and Lee [YL97]
use content summaries and rank databases according to the cue validity of
the query words: a query word w has high cue validity for a database D
if the probability of observing w in D is comparatively higher than in other
databases. Meng et al. [MLY+98, YML+99] also rely on content summaries
to identify the databases that contain the highest number of documents sim-
ilar to a query, and similarity is computed using the cosine similarity metric.
Meng et al. use a variety of methods to estimate the weight of the words in
the database, and propose to keep significant covariance statistics for word
pairs that appear often together. The storage requirements for the content
summaries in [MLY+98] are much higher compared to the other methods
that ignore the covariance statistics, such as [CLC95, XC98, GGMT99, YL97],
which we described above. In a similar approach, Yu et al. [YMWL01] rank
the databases for a query according to the highest similarity of any docu-
ment in each database and the query. Baumgarten [Bau97, Bau99] proposes a
probabilistic framework for database selection and uses content summaries to
derive the probability estimates p̂(w|D) that are used during querying. Most
approaches that use content summaries rely either on access to all documents
or on metadata directly exported by the databases, using, for example, a pro-
tocol like STARTS [GCGMP97].

French et al. [FPV+98, FPC+99, PFC+00, PF03] present experimental evalua-
tions of database selection algorithms. Their main conclusion is that CORI
is robust and performs better than other database selection algorithms for
a variety of data sets. More recent results by Xu and Croft [XC99] and Si
and Callan [SJCO02] indicate that a language modeling (LM) approach for
database selection works better than CORI for topically focused databases.
(We used the LM algorithm for our experiments in Chapter 4.) Xu and
Croft [XC99] and Larkey et al. [LCC00] show that organizing documents by
topic helps improve database selection accuracy. Our results in Chapter 4
are consistent with these findings, since they show that classification-aware
database selection algorithms perform better than algorithms that ignore the
classification information.

Our database selection techniques in Chapter 4 are built on top of an arbi-
trary “base” database selection algorithm. We have reported experiments
using CORI, bGlOSS, and LM. Our experimental results show that our tech-
niques improve database selection –in the face of sparse data– when used in
conjunction with a variety of existing “flat” algorithms. In the future, our
techniques of Chapter 4 can continue to leverage new database selection al-
gorithms that rely on content summaries to make the selection decisions. An
example of a new algorithm that we might use in the future is Si and Callan’s
recently presented ReDDE algorithm [SC03] (see below).
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Other database selection algorithms rely on hierarchical classification schemes
–mostly for efficiency– to direct queries to appropriate categories of the hierar-
chy [Dol98, She95, GGMT99, CY01, YML+99]. The hierarchical database se-
lection algorithm in [She95] uses intentionally small content summaries that
contain only the high frequency terms that characterize each category. The
hGlOSS system [GGMT99] focuses on the efficiency of selection and does not
exploit any topic similarity of the databases. Similarly, the hierarchical orga-
nization in [Dol98] focuses on efficiency and does not exploit the clustering of
similar databases under the same categories. Fuhr [Fuh99] briefly discusses
the hierarchical database selection problem, but no special clustering of sim-
ilar databases is considered to improve the hierarchical selection task. The
above hierarchical algorithms also need access to all documents or metadata
directly exported by the databases.

Other approaches rely on users providing relevance judgments to create a
profile of each database. Voorhees et al. [VGJL95] use a set of training queries
to learn the usefulness of each database and decide how many documents
to retrieve from each. ProFusion [GWG96] and SavvySearch [DH97] also
exploit historic data to learn the performance of each database for various
types of queries. Then, databases that exhibit higher performance for a query
are preferred over others that tend to return worse results. Fuhr [Fuh99]
uses a decision-theoretic model to decide whether to use a database and to
determine how many documents to retrieve from a selected database. The
method in [Fuh99] tries to minimize the cost of retrieval and assumes that the
precision-recall curves of the underlying retrieval system either are known or
can be estimated.

6.3 Constructing Database Content Summaries

Unfortunately, hidden-web text databases do not usually export any meta-
data about their contents and do not offer immediate access to their con-
tents. Callan et al. [CCD99, CC01] probe databases with semi-random queries
to extract content summaries from autonomous databases. (See Section 3.1
for a detailed discussion of this technique.) We used Callan et al.’s algo-
rithm extensively in our experiments of Chapters 2, 3, and 4. Monroe et
al. [MFP02] present and evaluate small variations of the algorithm presented
in [CCD99, CC01]. Craswell et al. [CBH00] compared database selection al-
gorithms in the presence of incomplete content summaries, extracted using
document sampling, and observed that the performance of the algorithms de-
teriorated with respect to their behavior over complete summaries. Etzioni
and Sugiura [SE00] proposed the Q-Pilot technique, which uses query expan-
sion to route web queries to the appropriate search engines and characterizes
databases using the words that appear in the web pages that host the search
interfaces, as well as words that appear in other web pages that link to the
databases. We used an adaptation of Q-Pilot for content summary generation
in a preliminary experimental evaluation [IG02] of our hierarchical database
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selection algorithm of Chapter 4. Our experiments showed that the Q-Pilot
content summaries are not sufficient for accurate database selection. Hawking
and Thistlewaite [HT99] used query probing to perform database selection by
ranking databases by similarity to a given query. Their algorithm assumed
that the query interface to the database can handle normal queries and query
probes differently, and that the cost to handle query probes is smaller than
that for normal queries.

Si and Callan [SC03] show that database selection performance can be im-
proved by considering database size estimates within their ReDDE database
selection algorithm. ReDDE retains the documents retrieved during content
summary construction and uses this document sample to estimate the dis-
tribution of relevant documents across databases. Further studies by Si and
Callan [SC04] show that CORI and LM are only marginally affected when
used in conjunction with the database size estimation method from [SC03].
This result is consistent with the behavior that we observed for CORI (with-
out use of shrinkage) with our frequency estimation method (see Section 4.4).

Our content summary construction technique in Section 3.4 is based on the
work by McCallum et al. [MRMN98], who introduced a shrinkage-based ap-
proach for hierarchical document classification in the face of sparse data.
Shrinkage is a form of smoothing and smoothing has been used extensively
in the area of speech recognition [Jel99] to improve probability estimates in
language models. Language modeling has also been used for information
retrieval [CL03]. Notably, smoothing is present in recent language modeling
approaches to information retrieval [ZL01, ZL02, ZL04]. An interesting direc-
tion for future work is to examine the performance of smoothing models other
than shrinkage for database selection, especially in the presence of database
classification information.

Liu et al. [LLCC04] estimate the potential inaccuracy of the database rank
produced for a query by a database selection algorithm. If this inaccuracy is
unacceptably large, then the query is dynamically evaluated on a few care-
fully chosen databases to reduce the uncertainty associated with the database
rank. This work does not take content-summary accuracy into consideration.
In contrast, in Section 4.2, we addressed the scenario where summaries are
derived from document samples –and are hence incomplete– and decide dy-
namically whether shrinkage should be applied, without actually querying
databases during database selection.

6.4 Evolution of Text Databases

We are not aware of prior work to experimentally measure database content
summary evolution over time or to schedule updates to the content sum-
maries to maintain their freshness. However, several previous studies have
focused on various aspects of the evolution of the web and of the related prob-
lem of web crawling. Ntoulas et al. [NCO04] studied the changes of individual
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web pages, using the same dataset that we used in Chapter 5. Ntoulas et al.
concluded that 5% of new content (measured in “shingles”) is introduced in
an average week in all pages as a whole. Additionally, [NCO04] observed a
strong correlation between the past and the future degrees of the changes of a
web page and showed that this correlation might be used to predict the future
changes of a page. For example, by measuring how much a page changed in
the past one week, we might predict how much the page would change in the
next one week quite accurately. In Chapter 5, we investigated this high-level
idea more formally through survival analysis and modeled the change behav-
ior of web databases using the Cox proportional hazard model. This model
was then used for designing the optimal scheduling algorithm for summary
updates. Lim et al. [LWP+01] and Fetterly et al. [FMNW03] presented pioneer
measurements of the degree of change of web pages over time, where change
was measured using the edit distance [LWP+01] or the number of changed
“shingles” [FMNW03] over successive versions of the web pages. Other stud-
ies of web evolution include [BC00b, CGM00, WM99, DFKM97, BC00a], and
focus on issues that are largely orthogonal to our work, such as page modifi-
cation rates and times, estimation of the change frequencies for the web pages,
and so on.

Web crawling has attracted a substantial amount of work over the last few
years. In particular, references [CGMP00, CLW98, EMT01, CN02] study how
a crawler should download pages to maintain its local copy of the web up
to date. Assuming that the crawler knows the exact change frequencies of
pages, references [CGMP00, CLW98] present an optimal page downloading
algorithm, while [EMT01] proposes an algorithm based on linear program-
ming. Cho and Ntoulas [CN02] employ sampling to detect changed pages.
All this work on web crawling mainly focuses on maintaining a local copy
of the web as up-to-date as possible, which requires maximizing the fraction
of remote pages whose local copy is up to date. Our goal in Chapter 5 is
different: we want to maximize the freshness of the content summaries that
describe the various web sites, so that we produce more accurate database
selection decisions.

Olston et al. [OW02] proposed a new algorithm for cache synchronization
in which data sources notify caches of important changes. The definition of
“divergence” or “change” in [OW02] is quite general and can be applied to
our context of Chapter 5. Their high-level optimization goal is also similar
to ours. However, the proposed push model might not be applicable when
data sources are “uncooperative” and do not inform others of their changes
as is the case on the web. Cho et al. [CGM03, CGMP00] proposed optimal
algorithms for web-page cache synchronization. The algorithms proposed
in [CGM03, CGMP00] are proven to be optimal when web-page changes fol-
low a Poisson process and we know their rate of change. Unfortunately, we
do not know the rate of change for databases, and the changes of database
content summaries do not follow a Poisson process.
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6.5 Miscellaneous Applications of Query Probing

In this thesis, we used query probing for text database classification and for
the extraction of content summaries from text databases. Query probing has
helped in other related tasks. Perkowitz et al. [PDEW97] use it to automat-
ically understand query forms and extract information from web databases
to build a comparative shopping agent. New forms of crawlers [RGM01]
use query probing to automatically interact with web forms and crawl the
contents of hidden-web databases. Cohen and Singer [CS96] use RIPPER to
learn queries that retrieve mainly documents about a specific category. The
queries are used at a later time to retrieve new documents about this cate-
gory. Their query generation step is similar to QProber’s (Section 2.2.1). Flake
et al. [FGLG02] extract rules from non-linear SVMs that identify documents
with a common characteristic (e.g., “calls for papers”). The generated rules
are used to modify queries sent to a search engine, so that the queries retrieve
mostly documents of the desired kind. Grefenstette and Nioche [GN00] use
query probing to determine the use of different languages on the web. The
query probes are words that appear only in one language. The number of
matches generated for each probe is subsequently used to estimate the num-
ber of web pages written in each language. Ghani et al. [GJM01] automatically
generate queries to retrieve documents written in a specific language. Meng
et al. [MYL99] used guided query probing to determine sources of heterogene-
ity in the algorithms used to index and search locally at each text database.
Bergholz and Chidlovskii [BC04] probe a database with a carefully selected
set of queries to identify the characteristics of the query language. Finally,
the QXtract system [AG03] automatically generates queries to improve the ef-
ficiency of a given information extraction system such as Snowball [AG00] or
Proteus [YG98] over large text databases. Specifically, QXtract learns queries
that tend to match those database documents that are useful for the extrac-
tion task at hand. The information extraction system can then focus on these
documents and ignore the rest, which results in large performance improve-
ments.
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Chapter 7

Conclusions and Future Work

In this thesis, we described key building blocks for supporting browsing and
searching over hidden-web text databases. Next, we summarize our main con-
tributions. We conclude by discussing some interesting directions for future
work.

In Chapter 2, we presented QProber, an algorithm for the automatic classifi-
cation of hidden-web text databases according to their topical focus. We pro-
vided a formal definition of the database classification task, and presented an
efficient classification algorithm that adaptively issues query probes to data-
bases. QProber exploits document classifiers to automatically generate query
probes, and categorizes databases without retrieving any document. QProber
approximates the topic distribution in the databases, based on the number of
matches reported for each query. Over a 4-level, 72-node hierarchical classi-
fication scheme, QProber uses –on average– only 120 queries to classify real
web databases, with an accuracy (according to a variant of the F-measure) of
approximately 70%.

In Chapter 3, we presented Focused Probing, a method for extracting con-
tent summaries from hidden-web text databases that do not report any sum-
maries of their contents. The content summary extraction algorithm builds
on QProber’s classification approach: during database categorization, our tech-
nique extracts a small, topically focused document sample from each database
and uses it to build the associated database content summary. Based on the
query-match information derived during probing, as well as on well-known
properties of text collections, our technique estimates the absolute document
frequencies of the content summary words. To enhance further the (sparse)
samples, we use “shrinkage,” a statistical technique for improving parameter
estimation in the face of sparse data. Our shrinkage technique is based on
the observation that topically similar databases tend to have similar vocabu-
laries, so samples extracted from databases with a similar topical focus can
complement each other. Our experimental results show that the generated
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content summaries are of higher quality than the ones generated by other
state-of-the-art methods.

In Chapter 4, we built on the results from Chapter 3 and we presented two
database selection algorithms that exploit database classification to improve
the quality of search results in the face of incomplete content summaries. Our
hierarchical database selection algorithm chooses the categories to explore for
a query based on category content summaries, and finally picks the best da-
tabases from the most appropriate categories. Our alternative algorithm is a
“flat” selection strategy that exploits the database categorization implicitly, via
the shrinkage-based content summaries that we introduced in Chapter 3. Our
algorithm also decides whether the application of shrinkage is beneficial in an
adaptive and query-specific way, and proceeds accordingly. Our experimen-
tal results showed that our classification-aware database selection algorithms
can significantly improve the quality of the selection decisions over that of
their state-of-the-art counterparts.

Finally, in Chapter 5, we presented a study on the evolution of web data-
base content summaries over time. Then, we showed how to use “survival
analysis” techniques to examine which parameters can help predict when the
content summaries need to be updated. Based on the results of this study, we
presented algorithms that analyze the update history as well as other char-
acteristics of the databases to predict when the content summaries need to
be modified. Our algorithms allow for clever scheduling of updates, thus
avoiding unnecessarily overloading the databases.

So far, our techniques implicitly assumed that the text databases on which
they operate have a topical focus, i.e., they contain mainly documents about
a relatively small number of topics. One interesting direction for future work
is to examine how our techniques could be adapted for arbitrary text data-
bases with documents on multiple topics. Also, existing database classifica-
tion and selection algorithms are not conceptually integrated with “surface-
web” search engines such as Google. However, this separation is artificial,
and users should be able to find the information they need from a single in-
terface, regardless of where this information resides. To realize the goal of
developing a unified interface to search all the information available on the
web, we need to expand our work in a number of ways. We now report a brief
sketch of interesting directions for future research with references to relevant
work.

• Interacting with Heterogeneous Text Databases: Our focused probing
method, as described in Section 3.2, extracts a single content summary
for each database. Xu and Croft [XC99] have indicated that database se-
lection can be improved if each database exports multiple topic-specific
content summaries, instead of a single, potentially heterogeneous one.
Database selection over topically-focused clusters of documents (each
with its own content summary) works better than over heterogeneous
document collections. Our focused probing method can be used for this
purpose: Instead of building a single content summary from the sam-
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pled documents, we can partition the documents that match the query
probes into topic-specific clusters, according to the category of the asso-
ciated probes.

• Integrated Web Search: Hidden-web text databases contain relevant
documents for many queries, but these documents fail to appear in the
results returned by regular web search engines. An interesting problem
is how to adapt current search engines to use databases (when neces-
sary) to answer user queries. A first step towards solving this problem
is to treat databases as “first-class” objects during web search. Databases
with documents that are relevant to a query should be ranked high in
the list of results. Better yet, databases should be properly queried –when
appropriate– to return the relevant documents. Ideally, when multiple
databases are needed to answer one query, their results should be com-
bined into one cohesive answer, which might not necessarily be just a
ranked list of documents, as the following example illustrates:

Example 11 Consider the query [good indie movies playing in New York
tomorrow]. If sent unmodified to a search engine, this query might return
incomplete or highly irrelevant results. However, all the information required
to answer this query is available on the web. Moviefone1 and Fandango2 show
the movies playing in New York on a given day. The Internet Movie database
(IMdb)3 and Rotten Tomatoes4 return the genre of the movie and user ratings.
By querying these databases and combining the results, we can generate an
answer for the user query that is better than the one that current search engines
generate.

Several challenges need to be addressed to seamlessly integrate dis-
tributed and centralized web search. Traditional crawlers need to be
adapted to handle web-accessible query interfaces; learning to under-
stand query interfaces and the results that they return is still an open
problem in its general form, despite recent progress in the area [RGM01,
HC03, ZHC04]. Also, algorithms developed for distributed information
retrieval should be adapted for use within centralized search engines.
In particular, database selection should be tightly integrated with exist-
ing document ranking algorithms: if a query on a hidden-web database
is expected to return only documents that will not be highly ranked in
the combined search results, then it is important for efficiency not to
query this database. By using the appropriate graph abstraction tools,
as outlined below, we can make this integration easier.

Another interesting question is to detect whether a query can be an-
swered by a single database, or whether it is necessary to query multi-
ple databases to get proper results. A promising direction is to adapt

1http://www.moviefone.com
2http://www.fandango.com
3http://www.imdb.com
4http://www.rottentomatoes.com

http://www.moviefone.com
http://www.fandango.com
http://www.imdb.com
http://www.rottentomatoes.com
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the notion of query clarity [CTZC02] and try to identify potential “sub-
queries” in a multiword query. An algorithm similar to the one in Sec-
tion 2.2.2 can be used to make this operation efficient. In a more general
setting, there are many interesting efforts aimed at bridging the gap
between the querying capabilities of web search engines and relational
databases [RGM03, ZRV+02, GW00]. We intend to contribute to this
line of research by providing building blocks that allow easy and trans-
parent querying of multiple web databases.

• Defining and Analyzing Query-based Algorithms: Query-based algo-
rithms such as QProber work by sending queries to databases and ana-
lyzing the returned results. Currently, query-based algorithms are eval-
uated mostly empirically. By defining proper abstraction tools, we can
better study the properties of these algorithms as well as get a better un-
derstanding of how, when, and why they work. As a first step towards
this goal [AIG03], we modeled query-based sampling of text databases
using random-graph theory. Our results allowed us to understand the
fundamental limitations of query-based approaches for several tasks, so
we plan to extend this kind of analysis to other query-based algorithms.

Other interesting applications of graph theory suggest themselves. For
example, in order to provide integrated web search, it is useful to gen-
eralize hyperlink-based ranking algorithms to also cover documents in
databases. Currently, hyperlink-based ranking algorithms cannot han-
dle databases that lack a relatively static hyperlink network connecting
their documents. An interesting direction to explore is to treat the search
interface of a database as a big “hub” page that dynamically links –as
a result of a query– to many “authority” pages, stored in the database.
The resulting graph could be used to compute the hyperlink-based rank-
ing of these documents, which are currently ignored by search engines.

• Organizing Large Collections: While organizing and accessing content
available on the web is an ongoing challenge, it is also important to
allow easy access to objects stored in local repositories. Novel ways
of browsing and searching large collections of text or text-annotated
objects, like e-mail, annotated images, and so on can improve signifi-
cantly the way that we currently handle information. Ideally, a system
should be able to take as input a set of objects and automatically orga-
nize them, so that users can easily browse the collection to find items
of interest. Today, the automatic construction of browsing structures
typically relies on clustering [ZRL96] or hierarchy construction algo-
rithms [SC99, LC03]. Unfortunately, clustering or hierarchy construction
approaches usually result in a single, monolithic hierarchy. In practice,
though, data can be organized across multiple dimensions: topic, date,
and language are a few of the orthogonal dimensions that can be used
to describe the same set of objects. Systems that allow users to browse
each dimension independently are regarded as better than monolithic
ones [YSLH03]. An interesting challenge is to build systems that can
“recognize” the different ways in which a single collection can be orga-
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nized, and automatically create the appropriate browsing structures for
each dimension. A promising direction is to learn to organize features
extracted from these objects into “orthogonal sets,” each representing a
distinct facet. We can then handle each feature set individually to cre-
ate the appropriate browsing structure for each facet. For example, the
“date” facet has a predefined hierarchical structure, while the hierarchi-
cal structure for the “topic” facet should be created using algorithms
for hierarchy construction. The result is an automatically constructed
“faceted” database, which allows easier browsing and identification of
useful content. Other interesting directions in this area include the inte-
gration of search and browsing for “faceted” databases, construction of
novel search interfaces that exploit the different facets, novel structures
for fast object retrieval, and so on.

In summary, in this thesis we presented efficient and scalable algorithms for
improving information access and retrieval over hidden-web text databases.
First, we presented a method to efficiently classify text databases into a catego-
rization scheme through query probing. Then, we showed that, by exploiting
database classification, we can compensate for sparse database content sum-
maries and we can improve the way that state-of-the-art database selection
algorithms handle incomplete information. Finally, we modeled how data-
base content summaries change over time and proposed update algorithms
that optimize the use of available resources. We have made many of the al-
gorithms described in this thesis available through SDARTS5 [GIG01, IBG02].
SDARTS is a protocol and toolkit that we developed at Columbia University
as part of the PERSIVAL Digital Libraries Initiative-Phase 2 project [MCC+01].
SDARTS is at the core of the search component of PERSIVAL and provides a
unified query interface over heterogeneous text databases, such as local text
and XML collections as well as hidden-web text databases. We hope that
SDARTS and the contributions of this thesis will prove useful to the research
community.

5http://sdarts.cs.columbia.edu

http://sdarts.cs.columbia.edu
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[CGMP98] Junghoo Cho, Héctor Garcı́a-Molina, and Lawrence Page. Ef-
ficient crawling through URL ordering. In Proceedings of the
Seventh International World Wide Web Conference (WWW7), pages
161–172, 1998. (Cited on page 43.)
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