
Query by Document

Yin Yang
Computer Science

HKUST
yini@cs.ust.hk

Nilesh Bansal
Computer Science

University of Toronto
nilesh@cs.toronto.edu

Wisam Dakka
Computer Science

Columbia University
wisam@cs.columbia.edu

Panagiotis Ipeirotis
Information Systems
New York University

panos@stern.nyu.edu

Nick Koudas
Computer Science

University of Toronto
koudas@cs.toronto.edu

Dimitris Papadias
Computer Science

HKUST
dimitris@cs.ust.hk

ABSTRACT
We are experiencing an unprecedented increase of content contributed
by users in forums such as blogs, social networking sites and micro-
blogging services. Such abundance of content complements con-
tent on web sites and traditional media forums such as news papers,
news and financial streams, and so on. Given such plethora of in-
formation there is a pressing need to cross reference information
across textual services. For example, commonly we read a news
item and we wonder if there are any blogs reporting related content
or vice versa.

In this paper, we present techniques to automate the process of
cross referencing online information content. We introduce method-
ologies to extract phrases from a given “query document” to be
used as queries to search interfaces with the goal to retrieve con-
tent related to the query document. In particular, we consider two
techniques to extract and score key phrases. We also consider tech-
niques to complement extracted phrases with information present
in external sources such as Wikipedia and introduce an algorithm
called RelevanceRank for this purpose.

We discuss both these techniques in detail and provide an ex-
perimental study utilizing a large number of human judges from
Amazons’s Mechanical Turk service. Detailed experiments demon-
strate the effectiveness and efficiency of the proposed techniques
for the task of automating retrieval of documents related to a query
document.

1. INTRODUCTION
Content generated by individuals on the web is proliferating at

a rapid pace including information produced on web pages, infor-
mation on blogs and social networking sites or micro-blogging ser-
vices. It is estimated that more than 60M blogs exist. Moreover, by
the end of 2009 estimates report a total of 230M people on social
networking sites [39]. The amount of information generated on a
daily basis is unprecedented.

At the University of Toronto we have been building BlogScope
(www.blogscope.net), a social media monitoring platform [2,
3, 4]. The system crawls, cleans, and aggregates data from several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’09, February 9–12, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

sources including blogs, top international news papers, major so-
cial networks, and collaborative wikis. An interactive search and
analysis interface is provided to easily query and correlate this in-
formation. At the time of writing, the system is indexing over 425
million text documents increasing at the rate of 11 new documents
per second, and serves visitors from over 20,000 unique IPs daily.

The proliferation of user generated content yields new opportu-
nities to obtain information and to remain informed with develop-
ments in diverse domains such as politics, local and world news,
technology etc. RSS readers have been very successful in deliver-
ing feeds of news or blogs. In light of this plurality of content there
is a pressing need to cross reference information across sources.
Consider for example, a news article from New York Times (either
at the nytimes.com site or delivered through an RSS reader) report-
ing on a breaking news story or on current affairs. It is desirable
to cross reference the information reported in the news source with
the buzz in blogosphere and other user generated content sources.
Commonly the reverse might be true, namely after reading a blog
post, to check news sites to obtain additional information.

In this paper we present a solution to this problem which we refer
to as Query by Document (QBD) allowing the user to submit a text
document as a query and identify related documents from another
text corpus. To provide such functionality, we present techniques to
process text documents on demand and extract key phrases which
are used to query BlogScope for retrieving blog posts related to the
query document. Extracting key phrases from a text document to
be used as queries is a challenging problem. We would like such
phrases to convey the ‘meaning’ of the document but at the same
time distinguishing enough to capture specific events or entities of
interest unique to the document. Further, our approach is domain
invariant (we use data from blogs and news sources just as a conve-
nience).

Figure 1 shows an screenshot of the user interface for QBD. Af-
ter the user inputs the text, the system shows a slider bar, which can
be adjusted to match the required level of relevance for querying re-
lated documents. The slider bar can be set to “Very General” mean-
ing fetch additional documents with somewhat similar content, or
“Highly Specific” meaning fetch documents that talk about exactly
the same events and topics. Clicking on one of “blogs”, “news”,
or “web” retrieves back matching documents from the selected do-
main.

Further, we show that it is possible to extend these ideas towards
the development of additional query types. In particular we uti-
lize a large collection of pages from Wikipedia to extract phrases
to enhance or substitute key phrases extracted from the input text
document. This version of query by document, referred to as QBD-
W, possesses highly novel semantics which we detail in Section 5.

Figure 1: Screenshot for QBD user interface.

We present algorithm RelevanceRank to select candidate phrases
from Wikipedia for this purpose. We validate the utility of our tech-
niques by submitting extensive sets of results to Amazon’s Mechan-
ical Turk (MTurk)[27] for human evaluation. This enables users at
large to act as judges of the quality of our findings. We present
detailed experimental results validating the applicability of our ap-
proach.

To summarize, our main contributions are

• We define the problem of querying a text corpus using an-
other text document. Such functionality can be used for cor-
relating multiple informations sources.

• We formalize the problem of extracting relevant phrases from
a document for the purpose of constructing queries to search
engines (QBD). Two variants for solving this problem are
proposed.

• We introduce the notion of using external knowledge sources
(Wikipedia in our case) for the purpose of enhancing the set
of query phrases. An algorithm for selecting relevant nodes
from the Wikipedia graph is presented.

• We evaluate our techniques by employing human judges from
Amazon’s MTurk.

The rest of the paper is organized as follows. Section 2 reviews
related work and provides necessary background. Section 3 for-
mally defines the problems of interest. Section 4 details our phrase
extraction and matching techniques. Algorithms for query enhance-
ment are discussed in Section 5. Section 6 presents a comprehen-
sive set of experiments validating the efficiency and effectiveness
of the proposed techniques. Section 7 concludes the paper.

2. RELATED WORK
Relevance Feedback QBD is a method that enables retrieval of

documents related, precisely or more generally to a query docu-
ment. Relevance feedback (RF) [30], is a well-studied technique to
improve query relevance which involves multiple interactions be-
tween an individual and the keyword search system to iteratively
refine the search results. Specifically, in the initial step, one is-
sues a query Q0 which consists of a set of keywords, and the sys-
tem returns its results R0, comprised of a set of documents. Often,
Q0 may not precisely express search intentions, consequently, only
some documents (forming a subset R+

0 of R0) are considered rele-
vant, and others (denoted as R−0 ⊂ R0) are not. RF requires one
to identify R+

0 and R−0 , and provide them as feedback. The iter-
ative query refinement process continues until no more feedback
is provided. Most solutions are based on Rocchio’s formula [30],

the basic idea of which is to modify the query by increasing (de-
creasing) the weights assigned to keywords which appear in rele-
vant (irrelevant) documents, respectively; meanwhile, the query is
expanded to include all terms present in relevant documents (note
that negative term weights are ignored). Several variations and en-
hancements, most notably by Harman [17] and Ide [19], have been
proposed for the Rocchio’s approach.

RF has been utilized to display a “similar pages” link along with
search results [32] in a web search scenario. While this function-
ality bears some resemblance with QBD, there are two fundamen-
tal differences between the two problems. First in RF there is an
element of interaction, progressively refining the query after exam-
ination of search results. In general it has been demonstrated (e.g.,
[1]), that RF is more effective in enhancing recall than precision
of the results. On the other hand QDB has the ability to identify
both highly specific and generally related information utilizing key-
words that are not necessarily present in the query document. Sec-
ond, RF always has a query as a starting point, which progressively
gets refined. In QDB the starting point in an entire document and
there is no feedback process for refinement, i.e., the system has ad-
ditional content at the beginning to utilize in order to specify the
retrieval task.

In fact, a direct application of Rocchio’s method to QBD (i.e.,
by setting Qi and R−i to empty, and R+

i to contain only the query
document) reduces to answering a keyword query comprised of all
terms appearing in the query document, which will retrieve back
only documents completely containing the original query text. Straight-
forward modifications of this method, such as taking only the top
few terms with highest TF/IDF weights do not yield satisfactory re-
sults either: often, the scope of the results are so narrow that they
provide little more than the information already present in the query
document.

Phrase Extraction Another area related to our work is automatic
extraction of phrases from documents. Existing solutions can be
roughly classified into two categories. The first mainly aims at ob-
taining high result accuracy. These methods typically apply statisti-
cal machine learning techniques, involving expensive computation,
and often rely on the availability of a large, high-quality training
set. Specifically, several approaches [36, 34] employ a supervised
or semi-supervised learning framework using training data to iden-
tify suitable key phrases. The main disadvantage is that they are
not suitable for general texts as they require training. Recently
such techniques have been enhanced with relationships between
phrases which are then incorporated in the learning framework [23,
24]. This enhancement however requires additional training. Pan-
tel et. al., [28] consider the term extraction problem using a cor-
pus. They apply several tests for word association [22] utilizing
prior information (from the corpus) regarding word co-occurrence
counts. This is computationally intensive and requires several prun-
ing thresholds which are difficult to set a priori in a document inde-
pendent fashion. Tomokiyo et. al., [33] employ language models
using a foreground and a background corpus, which after construc-
tion they combine in an additive way. This approach however, be-
sides the requirement of multiple corpuses, is difficult to apply for
phrases longer than two terms as it requires execution of an a pri-
ori style algorithm (to obtain word co-occurrence counts) which is
prohibitively expensive.

The second category (e.g., [12], [26], [35]) are practical, efficient
solutions proposed in the IR community. Typically, they employ
fast, heuristic methods based on various statistics collected from
the input document. Syntactic information has been utilized to iden-
tify candidate terms [9, 14]. In [9] candidate syntactic constructs
were grouped together; each group consisting of sets of words with

the same head word. Then within each group term sequences were
sorted by size. Maximal phrases within each group were subse-
quently identified. In [14] this idea is extended further, but this
time the frequency of words in the document is considered. The
technique identifies phrases, taking into account the syntactic label
of words surrounding a term; ranking however does not utilize any
sources or prior statistics.

Our phrase extraction techniques fall in the second category since
we seek a practical and computationally tractable approach to im-
plement in the BlogScope system. However, our focus is not to
extract a set of phrases to summarize the document, but to con-
struct a query. Moreover, we wish to provide flexibility regarding
the relevance of the results. To give an example, consider a query
document talking about the wedding of French president Nicolas
Sarkozy with Carla Bruni. The ideal collection of phrases extracted
for QBD would be the ordered set {“France”, “Nicolas Sarkozy”,
“Carla Bruni”}. For this set, use of only the first phrase will bring
back all documents talking about France (which is somewhat re-
lated to the query document), while use of all three phrases will
search for more closely related documents. To our knowledge, none
of existing methods for phrase ranking (e.g., [25]) are designed
to suit this purpose. Moreover, such phrases are automatically ex-
tracted from the document at hand, providing the option to query
for highly specific related content. Among a variety of choices, in
our experiments we use the Yahoo Phrase Extractor [37] for the
purpose of comparison. Besides providing easier repeatability of
the experiments, the comparison with a leading commercial system
underlines the value of the proposed solutions.

Query Enhancement We follow recent efforts to develop search
and information discovery tools [38, 11, 8] that greatly benefit from
Wikipedia’s authoritative source of common knowledge by exploit-
ing its graph structure, disambiguation pages, hierarchical classifi-
cation, and concept co-occurrence information. QBD-W, which en-
hances the initial phrase set with background knowledge extracted
from Wikipedia, bears similarities with traditional query expansion
[10], whereas the query is automatically expanded. Recent propos-
als, e.g., [21], have attempted incorporating the information pro-
vided by Wikipedia to strengthen query expansion techniques, with
considerable success. However, the goals of query expansion and
QBD-W are very different. Specifically, the underlying assump-
tion in query expansion is that one is unable to identify the pre-
cise keywords to express one’s needs, and thus enhances the query
with vague or surrounding concepts. The search engine, therefore,
tries to decode the user’s true intentions from this imprecise infor-
mation, and locate the correct terms to enlarge the query. In con-
trast, QBD-W starts from phrases that best describe the query doc-
ument, in the sense that they clearly express the one’s knowledge;
the goal is to locate new and related concepts to enrich that knowl-
edge. In other words, query expansion aims to improve precision
[10], while QBD-W also focuses on boosting recall. RelevanceR-
ank, the proposed solution for QBD-W, is inspired by PageRank
[18], TrustRank [16] and spreading activation framework [7]. A
more in-depth comparison with these works is presented later in
Section 5.

3. PROBLEM DEFINITION
Let B = {b1, b2, . . . bn} be a set of n blogs. Since a blog is a

reverse chronologically ordered stream of text posts written by an
individual (or a group of individuals), we model a blog b as a se-
quence of Pb posts. Each post p ∈ Pb contains two basic attributes:
the textual document content p.d and the timestamp signifying the
creation time of the post p.ts.

For each blog b, in addition to Pb, BlogScope extracts and main-

tains information regarding the blog creation time, profile informa-
tion regarding the blogger including age, profession, gender and
geographical location (at the city, state, country level), as well as
the aggregate count of in-links to the blog. The in-link count, along
with several other properties computed on the posts are used sub-
sequently by ranking algorithms. BlogScope adopts the usual text
based search interface to issue keyword or phrase queries with con-
junctive or disjunctive semantics. Moreover queries can be restricted
temporally (e.g., only search blogs with posts between Jan 16th and
23rd 2007) with further restrictions on the blogger profile informa-
tion (e.g., age between 30 and 35 and based in New Jersey, etc).
All qualifying posts are searched for matches and those yielding a
match are ranked using BlogScope’s ranking mechanisms and sub-
sequently returned as answers.

A QBD query q consists of a query document d, and optionally,
temporal or other metadata restrictions (e.g., age, profession, geo-
graphical location) specified by the user. The specific challenge we
address is the extraction of a number k (user specified) of phrases
from d in order to form a query with conjunctive semantics. Ideally
we would like them to be the phrases that an average user would
extract from d to retrieve blog posts related to the document.

PROBLEM 3.1 (QBD). Given a query document d, extract
a user specified number k of phrases to be used as input query
with conjunctive semantics to BlogScope. The blog posts retrieved
should be rated by an average user as related to the content of the
query document.

All phrases extracted by QBD are present in the document. This
functionality can be extended by taking into account external in-
formation sources. In particular Wikipedia contains a vast collec-
tion of information, in pages which exhibit high link connectivity.
Consider the graph Gw extracted from Wikipedia in which each
node vi corresponds to the title of the i-th Wikipedia page and is
adjacent to a set of nodes corresponding to the titles of all pages
that the i-th page links to. We extracted such a graph, which we
maintain up to date, currently consisting of 7M nodes. Gw encom-
passes rich amounts of information regarding phrases and the way
they are related. For example starting with the node for ‘Bill Clin-
ton’ we get links to nodes for the ‘President of the United States’,
‘Governor of Arkansas’, and ‘Hillary Rodham Clinton’. This graph
evidently provides the ability to enhance or substitute our collec-
tion of phrases extracted by QBD with phrases not present in the
query document. Given the numerous outlinks from the ‘Bill Clin-
ton’ page, it is natural to reason regarding the most suitable set of
title phrases to choose from Wikipedia. Let vi, vl be two nodes in
Gw corresponding to two phrases in the result of QBD for a doc-
ument. Intuitively we would like phrases in Gw corresponding to
nodes immediately adjacent to vi and vl to have higher chances to
be selected as candidates for enhancing or substituting the result
of QBD. This intuition is captured by an algorithm called Rele-
vanceRank which we propose in Section 5.

The choice to enhance or substitute the results of QBD on a doc-
ument with Wikipedia phrases depends on the semantics of the
resulting query. For example consider a document describing an
event associated with ‘Bill Clinton’, ‘Al Gore’ and the ‘Kyoto Pro-
tocol’ and that these three phrases are the result of QBD on a doc-
ument. If we add the phrase ‘Global Warming’ extracted from
Wikipedia (assuming that this phrase in not present in the result of
QBD) we will be retrieving blog posts possibly associating ‘Global
Warming’ with the event described in the query document (if any)1.
1Incidently all three Wikipedia pages for Bill Clinton, Al Gore and
the Kyoto Protocol point to the Wikipedia page for Global Warm-
ing.

As an additional example consider a document concerning a new
movie released by Pixar animation studios (say Ratatouille); as-
sume that this document does not mention any other animated movies
produced by Pixar. Nodes corresponding to other animated movies
produced by ‘Pixar’ would be good candidates from Wikipedia
since they are pointed by both the node for ‘Pixar’ and the node
for ‘Ratatouille’. By substituting (all or some) of the phrases in
QBD by phrases extracted from Wikipedia, such as ‘Toy Story’ and
‘Finding Nemo’, we would be able to retrieve posts related to other
movies produced by ‘Pixar’. All the above intuitions are formalized
in the following problem:

PROBLEM 3.2 (QBD-W). Given a set of phrases Cqbd ex-
tracted by QBD containing k phrases from d, identify a user defined
number k′ of phrases utilizing the result of QBD and the Wikipedia
graph Gw. The resulting k′ phrases will be used as input query
with conjunctive semantics to BlogScope. The blog posts retrieved
should be rated by an average user as related to the content of the
query document.

4. PHRASE EXTRACTION: QBD
In this section we detail the methodology for solving the QBD

problem introduced earlier. The basic workflow behind our solu-
tions to QBD is as follows: (1) Identify the set of all candidate
key phrases Call for the query document d. (2) Assess the signif-
icance of each candidate phrase c ∈ Call, assigning a score s(c)
between 0 and 1. (3) Select the top-k (for a user specified value of
k) phrases as Cqbd as a solution to QBD. We detail generation of
candidate key phrases Cqbd in Section 4.1 and the mechanisms to
score candidate key phrases in Section 4.2. Our solution to QBD-W
and the algorithm RelevanceRank are presented in Section 5.

4.1 Extracting Candidate Phrases
We extract candidate phrases Call from the query document d

with the help of a part-of-speech tagger (POST) [29]. Specifically,
for each term w ∈ d, POST determines its part-of-speech (e.g.,
noun, verb, adjective, etc.) by applying a pre-trained classifier on
w and its surrounding terms in d. For instance, in sentence “Wii
is the most popular gaming console”, term “Wii” is classified as
a noun, “popular” as an adjective, and so on. We represent the
tagged sentence as “Wii/N is/V the/P most/A popular/J gaming/N
console/N”, where “N”, “V”, “P”, “A”, and “J” signify noun, verb,
article, adverb, and adjective respectively.

Based on the part-of-speech tags, we consider all noun phrases
as candidate phrases, and compute Call by extracting all such phrases
from d. A noun phrase is a sequence of terms in d whose part-of-
speech tags match a noun phrase pattern (NPP). Table 1 lists some
example NPPs used and their instances (i.e., noun phrases). To fa-
cilitate efficient identification of candidate phrases, the pattern set
PS is organized as a forest of tries as illustrated in Figure 2. Each
path (e.g., n10 − n11 − n14) ending with symbol ‘$’ signifies a
pattern in PS (e.g., ‘NN’).

EXAMPLE 4.1. Let d = “Wii is the most popular gaming console”.
First we obtain the POST tags for each word in d, obtaining the tagged doc-
ument “Wii/N is/V the/P most/A popular/J gaming/N console/N”. The cor-
responding tag sequence dPOS is thus “NVPAJNN”. We then scan dPOS ,
and match all subsequences of length at most 5 against the PS trie forest
(see Figure 2). Continuing the example, the first tag “N” matches node
n10; since n10 has ‘$’ (n13, signifying end-of-pattern) as a child, the cor-
responding term c1 = “Wii” in d is identified as a candidate phrase. Sim-
ilarly, the subsequence “JNN” and “NN” match the paths n1 − n2 − n5

and n10 − n11 respectively, thus c2 = “popular gaming console” and c3
= “gaming console” are extracted as candidate phrases. Note that we do

Pattern Instance
N Nintendo
JN global warming
NN Apple computer
JJN declarative approximate selection

NNN computer science department
JCJN efficient and effective algorithm
JNNN Junior United States Senator
NNNN Microsoft Host Integration Server

... ...
NNNNN United States President George Bush

Table 1: Example of Noun Phrase Patterns and Instances

Figure 2: PS Trie Forest.

not require a candidate phrase to be maximal, for instance, c3 is a sub-
sequence of c2. This redundancy is eliminated later through scoring and
top-k selection of candidate phrases, detailed next.

4.2 Scoring Candidate Phrases
Once all candidate phrases are identified as Call, a scoring func-

tion f is applied to each phrase c ∈ Call. The scoring function
assigns a score to c based on the properties of c, taking into ac-
count both the input document, and the background statistics about
terms in c from the BlogScope corpus. The candidate phrases are
revised in a pruning step to ensure that no redundant phrases are
present. We propose two scoring mechanisms, ft and fl for this
purpose. ft utilizes the TF/IDF information of terms in c to assign
a score, while fl computes the score based on the mutual informa-
tion of the terms in phrase c. Both ranking mechanisms share the
same pruning module to eliminate redundancy in the final result
Cqbd. We provide examples and experimental comparison of these
two approaches later in this paper.

4.2.1 TF/IDF Based Scoring
We first describe ft, which is a linear combination of the total

TF/IDF score of all terms in c and the degree of coherence of c.
Coherence quantifies the likelihood these terms have in forming a
single concept. Formally, let |c| be the number of terms in c; we
use w1, w2, . . . , w|c| to denote the actual terms. Let idf(wi) be
the inverse document frequency of wi as computed over all posts
in BlogScope’s corpus. ft is defined as

ft(c) =

|c|∑
i=1

tfidf(wi) + α · coherence(c) (4.1)

where α is a tunable parameter.
The first term in ft aggregates the importance of each term in

c. A rare term that occurs frequently in d is more important than
a common term frequently appearing in d (with low idf , e.g., here,
when, or hello). This importance is nicely captured by tfidf for
the term [31]2. We use the total, rather than average tfidf to favor
phrases that are relatively long, and usually more descriptive.
2For implementation purposes we use tfidf(w) = tf(w)·idf(w)2

The second term in ft captures how coherent the phrase c is. Let
tf(c) be the number of times c appears in the document d, the
coherence of c is defined as

coherence(c) =
tf(c)× (1 + log tf(c))

1
|c| ×

∑|c|
i=1 tf(wi)

(4.2)

Intuitively, Equation 4.2 compares the frequency of c (the numer-
ator) against the average TF of its terms (the denominator). The
additional logarithmic term strengthens the numerator, preferring
phrases appearing frequently in the input document. For example,
consider the text fragment “... at this moment Dow Jones ...”. Since
the phrase “moment Dow Jones” matches the pattern “NNN”, it is
included in Call. However it is just a coincidence that the three
nouns appear adjacent, and “moment Dow Jones” is not a com-
monly occurring phrase as such. The coherence of this phrase is
therefore low (compared to the phrase “Dow Jones”), since the tf
of the phrase is divided with the average tf of terms constituting it.
This prohibits “moment Dow Jones“ to appear high in the overall
ft ranking.

Based on TF/IDF scoring, ft is good at distinguishing phrases
that are characteristic of the input document. In the running ex-
ample d = “Wii is the most popular gaming console”, ft strongly
favors “Wii” over “gaming console” since the former is a much
rarer term and thus has a much higher idf score. However, ft also
has the drawback that it is often biased towards rare phrases.

4.2.2 Mutual Information Based Scoring
fl uses mutual information (MI) between the terms of c as a mea-

sure of coherence in the phrase c along with idf values from the
background corpus. Mutual information is widely used in informa-
tion theory to measure the dependence of random variables. Specifi-
cally, the pointwise mutual information of a pair of outcomes x and
y belonging to discrete random variables X and Y is defined as [5]

PMI(x, y) = log

(
prob(x, y)

prob(x)prob(y)

)
(4.3)

where prob(x), prob(y), prob(x, y) are the probability of x, y and
the combination of the two respectively. Intuitively, for a phrase c
consisting of terms w1, w2, ..., w|c|, the higher the mutual infor-
mation among the terms, the higher are the chances of the terms
appearing frequently together; and thus they are more likely to be
combined to form a phrase.

The scoring function fl takes a linear combination of idf values
of terms in c, frequency of c, and the pointwise mutual information
among them. Let tf(c) and tf(POSc) be the number of times c
and its part-of-speech tag sequence POSc appear in d and POSd

respectively, then

f ′l (c) =

|c|∑

i=1

idf(wi) + log
tf(c)

tf(POSc)
+ PMI(c) (4.4)

The first part in the equation above represents how rare or descrip-
tive each of the terms in c is. The second part denotes how frequent
the phrase c is at the corresponding POS tag sequence in the doc-
ument. The third part captures how likely are the terms to appear
together in a phrase.

The PMI(c) for a phrase c is

PMI(c) = log

(
prob(c)

Π
|c|
i=1prob(wi)

)

PMI can be evaluated either at the query document itself or at
the background corpus. Computation of these probabilities for the

which is widely used in practice, most notably by the Apache
Lucene’s Similarity class.

background corpus requires a scan of all documents, which is pro-
hibitively expensive3. In order to compute PMI using d only, let
prob(wi) and prob(c) denote the probability of occurrence of wi

and c respectively at the appropriate part-of-speech tag sequence.

prob(c) =
tf(c)

tf(POSc)
, and prob(wi) =

tf(wi)

tf(POSwi)

Substituting these probabilities in Equation 4.4,

f ′l (c) =

|c|∑

i=1

idf(wi) + log
tf(c)

tf(POSc)
+ log




tf(c)
tf(POSc)

Π
|c|
i=1

tf(wi)
tf(POSwi

)




(4.5)

The scoring function as defined in Equation 4.5 identifies how
rare or descriptive each term is and how likely these terms are to
form a phrase together. This definition however does not stress ad-
equately the importance of how frequent the phrase is in document
d; therefore we weight it by tf(c)

tf(POSc)
before computing the final

score fl. The scoring function fl therefore is,

fl(c) =
tf(c)

tf(POSc)
×



|c|∑

i=1

idf(wi) + log
tf(c)

tf(POSc)
+ log




tf(c)
tf(POSc)

Π
|c|
i=1

tf(wi)
tf(POSwi

)







(4.6)

The tf values in the above equations are computed by scanning the
document d once, while the idf values are maintained precomputed
for the corpus.

The scoring function (ft or fl) evaluates each phrase c ∈ Call

individually. As a result, candidate phrases may contain redun-
dancy. For example, a ranking function may judge that both c1 =
“gaming console” and c2 = “popular gaming console” as candidate
phrases. Since c1 and c2 refer to the same entity, intuitively only
one should appear in the final list Cqbd. We therefore apply a post-
processing step after evaluating the ranking function on elements
of Call. Methodology for computing Cqbd is shown in Algorithm
1. Lines 7-14 demonstrate the pruning routine after evaluating the
ranking function. Specifically, a phrase c is pruned when there ex-
ists another phrase c′ ∈ Cqbd such that (i) c′ has a higher score
than c, and (ii) c′ is considered redundant in presence of c. The
function Redundant evaluates whether one of the two phrases c1,
c2 is unnecessary by comparing them literally.

Note that sometimes the shorter phrase may be more relevant,
so we should not simply identify longer phrases. For instance, the
phrase “drug” may have higher score than a longer phrase “tubercu-
losis drugs” in a document that talks about drugs in general, and tu-
berculosis drugs is one of the many different phrases where the term
“drug” appears. Also, the candidate set Call may contain phrases
with common suffix or prefix, e.g., “drug resistance”, “drug facility”
and “drug needs”, in which case we keep only the top few highest
scoring phrases to eliminate redundancy. Redundant returns true if
and only if either one phrase subsumes the other, or multiple ele-
ments in Cqbd share common prefix/suffix.

3If statistics regarding the co-occurrence in the text of n (n ≥ 2)
terms is available one can obtain more precise correlation infor-
mation for sets of terms. However this comes with a high com-
putation, storage and maintenance cost as the number of all such
combinations of keywords is very high. In BlogScope we maintain
precomputed idf values for single keywords only, and statistics for
combinations of keywords is not materialized.

Algorithm 1 Algorithm for QBD
INPUT document d, and required number of phrases k

ComputeQBD
1: Run a POS tagger to obtain the tag sequence POSd for d
2: Initialize Call and Cqbd to empty
3: Match POSd against the PS Trie forest
4: For each subsequent POSc ⊂ POSd that matches a NPP, append the corre-

sponding term sequence to Call

5: for each c ∈ Call do
6: Compute the score sc using either of ft or fl

7: if NOT exists c′ ∈ Cqbd such that (Redundant(c, c′) = true and
sc′ > sc) then

8: Add c to Cqbd

9: end if
10: for each c′ ∈ Cqbd do
11: if Redundant(c, c′) and sc′ < sc then
12: Remove c′ from Cqbd

13: end if
14: end for
15: If |Cqbd| > k, remove the entry with minimum score
16: end for
17: OUTPUT Cqbd

5. USING WIKIPEDIA: QBD-W
We have constructed a directed graph Gw =< V, E > by pre-

processing a snapshot of Wikipedia, modeling all pages with the
vertex set V and the hyperlinks between them with the edge set E.
Specifically, a phrase c is extracted for each page pc in Wikipedia
as the title of the page. Each such phrase is associated with a
vertex in V . Hyperlinks between pages in Wikipedia translate to
edges in the graph Gw. For example, the description page for
“Wii” starts with the following sentence: “The Wii is the fifth home
video game console released by Nintendo”, which contains hyper-
links (underlined) to the description pages of “video game console”
and “Nintendo” respectively. Intuitively, when the Wikipedia page
pc links to another page pc′ , the underlying phrases c and c′ are
related. Consider two pages pc1 and pc2 both linking to pc′ . If the
number of links from pc1 to pc′ is larger than the number of links
from pc2 to pc′ , we expect c1 to have a stronger relationship with
c′. This can be easily validated by observing the Wikipedia data.

Formally, the Wikipedia graph Gw is constructed as follows: a
vertex vc is created for each phrase c which is the title of the page
pc. A directed edge e =< vc, vc′ > is generated if there exists a
hyperlink in pc pointing to pc′ . A numerical weight wte is assigned
to the edge e =< vc, vc′ > with value equal to the number of
hyperlinks from pc pointing to pc′ . We refer to the weight of the
edge between two vertices in graph Gw as their affinity.

EXAMPLE 5.1. Figure 3 depicts the interconnection between phrases
c1 = “Wii”, c2 = “Nintendo”, c3 = “Sony”, c4 = “Play Station”, and
c5=“Tomb Raider”, in the Wikipedia graph. The number beside each edge
signifies its weight, e.g., wt<c1,c2> = 7 implying that there are 7 links
from the description page of “Wii” to that of “Nintendo”. Node c2 is
connected to both c1 and c3, signifying that “Nintendo” has affinity with
both “Wii” and “Sony”. Edge < c2, c1 > has a much higher weight than
< c2, c3 >, signifying that the affinity between “Nintendo” and “Wii” is
stronger than that between “Nintendo” and “Sony” (the manufacturer of
Play Station 3, a competitor of Wii). Therefore, if “Nintendo” is an impor-
tant phrase mentioned in the input document d, i.e., c2 ∈ Cqbd, it is much
more likely that c1 (rather than c3) is closely relevant to d, and thus should
be included in the enhanced phrase set after QBD-W.

Once Gw is ready and the set Cqbd is identified, it can be en-
hanced using the Wikipedia graph according to the following proce-
dure: (1) Use Cqbd to identify a seed set of phrases in the Wikipedia
graph Gw. (2) Assign an initial score to all nodes in Gw. (3) Run
the algorithm RelevanceRank as described in Algorithm 2 to iter-
atively assign a relevance score to each node in Gw. The Rele-

Figure 3: Part of Wikipedia graph with five nodes

Algorithm 2 Algorithm to compute RelevanceRank
INPUT Graph Gw =< V, E >, QBD phrases Cqbd, k′

RelevanceRank
1: Initialize the seed set to empty set
2: for each c ∈ Cqbd do
3: Compute node v ∈ V with smallest edit distance to c
4: If edit_distance(c, v) < θ, add v to S
5: end for
6: for each v ∈ V do
7: Assign initial score to v based on Equation 5.1
8: end for
9: for i = 1 to MaxIterations do

10: Update scores for each v ∈ V using Equation 5.3
11: If convergence, i.e., RRi = RRi−1, break the for loop
12: end for
13: Construct Cwiki as the set of top-k′ vertices with highest RR scores

vanceRank algorithm is an iterative procedure in the same spirit as
biased PageRank [18] and TrustRank [16]. (4) Select the top-k′

highest scoring nodes from Gw (for user specified value of k′) as
top phrases Cwiki.

The RelevanceRank algorithm starts (Lines 1-5) by computing
the seed set S containing the best matches of phrases in Cqbd. To
find best matches, for each phrase c ∈ Cqbd, an exact string match
over all nodes in Gw is conducted to identify the node matching c
exactly. If no such node exists an approximate match is conducted.
We deploy edit distance based similarity [20] for our experiments,
but other approximate match techniques can also be used [6, 15]. It
is possible that a phrase c ∈ Cqbd is not described by any Wikipedia
page. A threshold θ on maximum edit distance is therefore used.
The matching phrase c′ ∈ Gw is added to the seed S only if the
edit distance between c′ and c is below θ.

After generating S, RelevanceRank initializes the ranking score
RR0

v of each vertex v ∈ V (Lines 6-8). Let cv be the phrase in
the seed set corresponding to the vertex v. Let s(cv) be the score
assigned to it by either one of the two scoring functions (ft or fl)
described in the previous section. RR0

v is defined by

RR0(v) =

{
s(cv)∑

v′∈S s(cv′)
if v ∈ S

0 otherwise
(5.1)

This initializes the scores of all vertices not in the seed set to zero.
Scores of vertices in the seed set the normalized to lie in [0, 1] such
that the sum is 1.

Next RelevanceRank iterates (Lines 9-12) until convergence or
reaching a maximum number of iterations MaxIterations. The ith

iteration computes RRi based on the results of RRi−1 following
the spreading activation framework [7]. Specifically, the transition
matrix T is defined as

T [v, v′] =





wte∑
e′=(v,w) wte′

if ∃e =< v, v′ >∈ E

0 otherwise
(5.2)

The entry T [v, v′] represents the fraction of out-links from the page
corresponding to v in Wikipedia that point to the page associated
with v′. Observe that each entry in T is in range [0, 1] and the sum

Wii Sony Nintendo Play Tomb
Station Raider

Wii 0 2/10 7/10 1/10 0
Sony 0 0 0 4/4 0

Nintendo 5/6 1/6 0 0 0
Play Station 2/11 6/11 1/11 0 2/11

Tomb Raider 0 0 0 1/1 0

Table 2: Transition matrix for graph in Figure 3

of all entries in a row is 1. Conceptually T captures the way a vertex
v passes its affinity to its neighbors, so that when v is relevant, it
is likely that a neighboring phrase v′ with high affinity to v is also
relevant, though to a lesser degree.

EXAMPLE 5.2. The transition matrix for vertices in Figure 3 is dis-
played in Table 2.

To model the fact that a phrase connected to nodes from Cqbd

through many intermediate nodes is only remotely related, the prop-
agation of RR is dampened as follows: with probability αv , v
passes its RR score to its successors, and with probability (1−αv)
to one of the seed vertices S. Formally RRi

v in the ith iteration is
computed by

RRi
v =

∑

e=<v′,v>

αv′ ·RRi−1
v′ · T [v′, v]

+ RR0
v

∑

v′∈V

(1− αv′)RRi−1
v′ (5.3)

The first term in the equation represents propagation of RR scores
via incoming links to v. The second term accounts for transfer of
RR scores to seed nodes with probability 1−αv′ . Recall that RR0

v

is zero for phrases not in the seed set, and thus the second term in
the equation above is zero for v /∈ S.

The RelevanceRank algorithm can be alternatively explained
in terms of the random surfer model. In the Wikipedia graph Gw,
first the seed nodes are identified by using the result Cqbd of QBD.
Each of these seed nodes is assigned an initial score using a scoring
function (ft or fl). All other nodes are assigned score zero. The
surfer starts from one of the seed nodes. When at node v, the surfer
decides to continue forward, selecting a neighboring node v′ with
probability αv · T [v, v′]. With probability 1− αv , the surfer picks
a node at random from the initial seed set. The probability of selec-
tion of the node from the seed set is proportional to the initial RR0

scores of the nodes in S. At convergence, RR score of a node is
the same as the probability of finding the random surfer there.

In RelevanceRank, with probability 1 − αv , the random surfer
jumps back to nodes in the seed set only and not to any node in
Gw. This is in similar spirit as the topic-sensitive PageRank and
TrustRank algorithms [18, 16], which use a global constant value
αv = α for all v ∈ Gw for returning back to one of the seed nodes.
Selection of a constant α is however not suitable for RelevanceR-
ank for the following two reasons:

• The RelevanceRank scoring function must prefer nodes that
are close to the initial seed set. In TrustRank, existence of a
path between two nodes suffices for propagation of trust (as
stationary state probabilities are probability values after the
surfer makes infinitely many jumps). The same holds true
for PageRank as well, where existence of a path is sufficient
for propagation of authority. For the case of RelevanceRank
however, the length of the path is an important consideration.
Propagation of RR scores over long paths needs to be penal-
ized. Only nodes in the vicinity of seed nodes are relevant to
the query document. The value of αv therefore must depend
on the distance of a node from the seed set.

• Gw consists of over 7 million nodes. Execution of the iter-
ative algorithm to compute RR scores over the entire graph
for every query is not feasible. Unlike TrustRank or PageR-
ank, where one-time offline computation is sufficient, Rele-
vanceRank needs to be evaluated on a per-query basis. Since
only nodes close to the seed set are relevant, we set αv to
zero for vertices v ∈ V far from the seed set S. Let lmax be
the maximum permissible length of path from a node to S.
Define the graph distance GD(v) of a node v as its distance
from the closest node in the seed set. Formally,

GD(v) = minv′∈Sdistance(v′, v)

where distance represents the length of the shortest path be-
tween two nodes. Thus, if GD(v) ≥ lmax for some v ∈ V ,
αv is assigned value 0. Application of this restriction on
αv allows us to chop off all nodes from Gw that are at dis-
tance greater than lmax from S, which significantly reduces
the size of the graph we need to run the RelevanceRank
algorithm on. As the value of lmax increases, the size of
sub-graph over which RelevanceRank is to be computed in-
creases, leading to higher running times.

We implemented the version of RelevanceRank with a constant
value of α for the purpose of experimentation. Apart from high
computational overhead, we discovered that this implementation al-
ways returned irrelevant set of phrases belonging to a densely con-
nected clique far away from starting seed set. For example, query
starting from any document related to George Bush returned pro-
tein names as result of QBD-W, since some research on proteins
was conducted during Mr Bush’s presidency and proteins form a
highly dense subgraph in the Wikipedia graph. This is expected,
since the stationary probabilities in the random surfer model used
for PageRank is very high for nodes in such cliques independent of
the starting node. Hence, we experimentally verified that the use of
either of TrustRank or topic sensitive PageRank for this problem is
not suitable.

For the above mentioned reasons, αv for a node v is defined
as a function of its graph distance GD(v). We would like αv to
decrease as GD(v) increases such that αv = 0 if GD(v) ≥ lmax.
We define αv as

αv = max

(
0, αmax − GD(v)

lmax

)
(5.4)

for some constant αmax ∈ [0, 1].
When the iterative algorithm for computation of RelevanceRank

finishes, each node is assigned an RR score. The process is guaran-
teed to converge to a unique solution, as the algorithm is essentially
the same as that of computing stationary state probabilities for an
irreducible Markov chain with positive-recurrent states only [13].
These nodes, and thus corresponding phrases, are sorted accord-
ing to the RR scores, and top-k′ (for a user-defined value of k′)
are selected as the enhanced phrase set Cwiki. The new set Cwiki

may contain additional phrases that are not present in Cqbd. Also,
phrases from Cqbd included in Cwiki may have been re-ranked, that
is the order of phrases in Cqdb appearing in Cwiki may be differ-
ent than the corresponding order these phrases have in Cqdb. This
means, even for k′ ≤ k, the set Cwiki can be very different from
Cqbd depending on the information present in Wikipedia.

EXAMPLE 5.3. Consider the graph in Figure 3. Assume that the seed
set consists of only one node “Nintendo”. Let αmax = 0.8 and lmax=2.
Then, initial score for Nintendo will be 1, RR0

Nintendo = 1; and for Sony,
Wii and Play Station, the initial score will be zero. Also, αNintendo = 0.8,
αSony = 0.3, αWii = 0.3, αPlayStation = 0, and αTombRaider = 0.
Note that, the random surfer can never reach the node “Tomb Raider” in
this setting since the surfer must jump back to “Nintendo” when he reaches

iterations Wii Sony Nintendo Play Station
0 0 0 1 0
1 0.67 0.13 0.20 0
2 0.13 0.06 0.74 0.06
3 0.49 0.11 0.38 0.02
4 0.25 0.08 0.62 0.05
5 0.41 0.10 0.46 0.03
..

infinite 0.35 0.09 0.52 0.03

Table 3: RelevanceRank scores after 1-5 iterations and at con-
vergence

the node “Play Station”. Hence we can simply remove all nodes, includ-
ing “Tomb Raider”, with graph distance greater than 2 for calculating RR
scores. The transition matrix is presented in Table 2. Only the first four
rows and columns of the transition matrix are relevant. RelevanceRank
scores after few iterations will be as displayed in Table 3. At convergence,

“Nintendo” has the highest RR score 0.52, with “Wii” at the second posi-
tion. Scores for “Sony” and “Play Station” are low as expected.

EXAMPLE 5.4. Consider the news article titled “U.S. Health Insur-
ers Aim to Shape Reform Process” taken from Reuters4. Top 5 phrases in
QBD for this article consists of “america’s health care system”, “ahip’s
ignani”, “special interests”, “tax credits” and “poorer americans”. While
these phrases do relate to the meaning of the document, they do not neces-
sarily constitute the best fit for describing it. The result of running QBD-W
with the same value of k′ = k = 5 results in “american health care”,

“ahip”, “universal health care”, “united states” and “poore brothers”. Ar-
guably, the latter articulates the theme of the document in a much better
way. Enhancement using wikipedia graph has replaced and re-ranked most
items from the seed set consisting of 5 initial terms. For example, the phrase

“AHIP’s Ignani” that appears thrice in the document, and which refers to
the CEO Karan Ignani of America’s Health Insurance Plans, has been re-
placed with just AHIP. Also, “america’s health care system” is re-written
as “american health care” (due to use approximate string matching) which
is the title of a page in Wikipedia.

6. EXPERIMENTS
We now present the experimental evaluation of our techniques.

Section 6.1 discusses the data sets utilized for our experiments.
Section 6.2 describes our use of Amazon Mechanical Turk to eval-
uate the quality of the phrase extraction techniques. Then, Sec-
tion 6.3 presents our experiments for measuring the retrieval qual-
ity under our query-by-document scenario, demonstrating that our
techniques significantly outperform existing, strong baselines.

6.1 Data Sets and Alternative Techniques
Query Documents: We extracted and present results for a ran-

dom sample of 34 news articles from the New York Times, The
Economist, Reuters, and Financial Times published during Aug -
Sept, 2007. We refer to this set of documents as NYTS. These are
the documents that we use as queries to locate related blog postings
on BlogScope. We evaluated several collections of data sets and we
present NYTS as representative of our results.

Techniques: We present two algorithms, QDB employing ft

scoring (referred to QBD-TFIDF in our experiments) and QBD em-
ploying fl scoring (referred to QBD-MI) to extract query phrases
from a document. These techniques extract a ranked list of the
top-k phrases from a document. In our experiments, we present
results for varying values of k. Similarly, we experimented with
the extraction technique from Section 5, which identifies important
terms that do not appear in the document, by analyzing the graph
of Wikipedia; we refer to this technique as QBD-W. As a strong

4http://www.reuters.com/article/domesticNews/idUSN2024291720070720

baseline, we use the “Yahoo Term Extraction” (QBD-YAHOO) ser-
vice [37], which takes as input a text document and returns a list of
significant words or phrases extracted from the document.

6.2 Quality of Phrase Extraction
Our first step is to examine the quality of the phrases obtained

by the various techniques. For this, we run two experiments, using
human annotators utilizing Amazon’s Mechanical Turk service.
Annotator-Nominated Relevant Phrases: We wish to examine
whether phrases identified by human annotators as important, are
also identified as important from our techniques. To avoid any bias,
we launched a large scale user study using the Amazon Mechani-
cal Turk service [27]. This service offers access to a community
of human subjects and tools to distribute small tasks that require
human intelligence. In our study, each Mechanical Turk annotator
was presented with a document, and had to list up to 10 phrases that
are characteristic of the document; in particular we asked the anno-
tators to identify phrases that they would “use as queries to locate
this document on Google.” To ensure the quality of this distributed
labeling effort, we asked five distinct annotators to extract phrases
from each document. Then, for each phrase identified, we measure
how many users agreed that a given phrase is relevant, to compute
the level of agreement across annotators for each phrase. Since our
labelers might use slightly different wording to refer to the same
phrase (e.g., phrases “crandon swat team” and “crandon swat” refer
to the same entry), we use a string similarity technique [6] in con-
junction with our own manual inspection, to group similar phrases
together. Annotators did not have access to our techniques and had
no knowledge of the output of our algorithms on the same docu-
ments for this experiment to avoid any bias.

0.8

0.9

0 5

0.6

0.7

o
n

0.3

0.4

0.5

P
re
ci
si
o

QBD MI

QDB TFIDF

0.1

0.2

QDB TFIDF

QBD YAHOO

0

1 2 3 4 5
Annotator Agreement Level

Figure 4: Precision against the annotator-nominated relevant
phrases.

We compute the precision of each technique, against the pool of
annotations produced by Mechanical Turk annotators. We define
the precision at agreement level l for a technique T , as precision =
h/k, where h is the number of phrases identified by at least l hu-
mans and by technique T (i.e., the number of common phrases
between humans and T), and k is the total number of phrases ex-
tracted by technique T . Figure 4 presents the precision of our tech-
niques, for k = 2 for different levels of agreement. (The results
are similar, qualitatively, for other values of k.) We observe that
QBD-MI outperforms QBD-TFIDF and QBD-YAHOO across all
agreement levels. This indicates that there exists good agreement
between the output of our techniques and the expectations of hu-
mans.
Automatically Extracted Relevant Phrases: The previous exper-
iment indicated that the phrases extracted by our techniques agree
with the phrases that are independently extracted by humans. Our
techniques, however, extracts a larger number of phrases that were
not listed by the annotators. In this experiment, we expose the
phrases to the annotators asking them the question: are these phrases
relevant or non relevant to the contents of the document. When

the annotators look at the automatically extracted phrases, they can
easily determine whether a particular phrase accurately depicts the
contents of the document. So, to examine the accuracy of our tech-
niques, we used each of QBD-MI, QBD-TFIDF, and QBD-YAHOO,
and extracted from each document the set of top-k phrases (k = 20)
for each technique. This resulted in a pool of a maximum of 60
phrases per document (usually the number was lower, as often the
three techniques extracted similar sets of phrases). Each phrase in
each pool was labeled by five annotators. At the end of the process,
we associated each phrase with an agreement level, counting how
many annotators marked the phrase as relevant.

Figure 5 presents the precision@k of our techniques, for varying
values of k and for level of agreement 3 and above. We observed
that QBD-MI outperforms the other techniques for k < 4, while
the techniques tend to perform equally for larger values of k. Re-
stricting our attention to a few phrases only, brings out differences
among the techniques considered. For a large number of phrases
the techniques appear similar in terms of characterizing the con-
tent of the document. Our primary goal however is to utilize such
phrases to identify documents (in our case blog posts) related to the
query document. We report on such experiments next.

0.70

0.75

QBD MI

0.65

o
n
@
K

QBD TFIDF

QBD YAHOO

0.55

0.60

P
re
c
is
io

0 45

0.50

0.45

1 2 3 4 5
k

Figure 5: Precision after extracting the top-k phrases.

6.3 Quality of Document Retrieval
Quality of Querying-by-Document: We deploy our techniques
to generate queries from the query document to be used as query
phrases in order to retrieve related documents from BlogScope. To
measure the quality of the various query-by-document techniques,
for each “query-document” in NYTS, we extracted top-k phrases
(for varying values of k) and then submitted these phrases as queries
to the BlogScope search engine. We then retrieved the top-5 match-
ing documents for these queries, and generated a pool of retrieved
documents for each query-document and each value of k. The
query-document and the pool of retrieved documents were submit-
ted to Amazon Mechanical Turk, where we asked 5 annotators to
examine individually each retrieved document and decide whether
it is relevant to the query-document.

Figure 6 illustrates the results. One clear trend is that QBD-MI
and QBD-TFIDF systematically outperform QBD-YAHOO for dif-
ferent annotator agreement levels and for different values of k (the
number of phrases used as seed queries to BlogScope). This in-
dicates that QBD-MI and QBD-TFIDF are able to identify docu-
ments (blog posts) more relevant to the query document. To un-
derstand why QBD-YAHOO performs worse than the other tech-
niques, we manually inspected the queries and the corresponding
retrieved documents. The QBD-YAHOO method tends to generate
queries (phrases) that capture the general topical area of the docu-
ment, but are not specific enough to retrieve documents that will be
deemed relevant by the users. In fact, the extracted terms could be
used as general-purpose tags for summarizing and classifying the
document in a broad classification taxonomy but are relatively in-
adequate when used as queries due to their generality. Comparing

0 4

0.5

0.6

0.7

0.8

r
ie
v
e
d
d
o
c
u
m
e
n
ts

0

0.1

0.2

0.3

0.4

1 2 3 4 5

P
r
e
c
is
io
n
a
t
k
r
e
t
r

k

QBD MI

QBD TFIDF

QBD YAHOO

(a) Annotator agreement: 2 and above

0 4

0.5

0.6

0.7

0.8

r
ie
v
e
d
d
o
c
u
m
e
n
ts

0

0.1

0.2

0.3

0.4

1 2 3 4 5

P
r
e
c
is
io
n
a
t
k
r
e
t
r

k

QBD MI

QBD TFIDF

QBD YAHOO

(b) Annotator agreement: 3 and above

0 4

0.5

0.6

0.7

0.8

r
ie
v
e
d
d
o
c
u
m
e
n
ts

QBD MI

QBD TFIDF

QBD YAHOO

0

0.1

0.2

0.3

0.4

1 2 3 4 5

P
r
e
c
is
io
n
a
t
k
r
e
t
r

k

(c) Annotator agreement: 4 and above

Figure 6: Retrieval precision using k phrases (precision@k).

QBD-MI and QBD-TFIDF, we can see that QBD-MI performs bet-
ter for lower levels of annotator agreement, but this trend reverses
when we consider only documents for which 3 and more annota-
tors agree. This result indicates that QBD-MI is better in retrieval
environments where users are looking for a diversity of results in
the returned matches, while QBD-TFIDF is better suited for envi-
ronments where the goal is to present results that are commonly
accepted as being related to the topic of the query, ignoring poten-
tially less common interpretations of the query-document topics.

We observed that extracting more than k = 5 phrases from a
query document to utilize as queries to BlogScope was never re-
quired for the case of NYTS set. In fact it was not possible to
retrieve related blog posts when queries consisted of more than five
phrases (the returned result was empty; evidently no article in our
NYTS collection appeared verbatim in the Blogosphere).
Quality of Querying-by-Document-Wikipedia: Finally, we run
a set of experiments using QBD-W, that utilizes the Wikipedia ex-
pansion technique, described in Section 5, to identify useful query
terms for our query-by-document approach. We conducted an ex-
periment using Mechanical Turk similar to that for assessing the
quality of QBD asking annotators to characterize the resulting doc-
uments (blog posts) as relevant or not to the query document. Fig-
ure 7 reports obtained precision for different agreement levels as
the number of phrases k′ used for retrieving the documents is var-
ied. The type of query results produced by this technique tend to
be distinct and different than the results returned by QBD-MI, QBD-
TFIDF, and QBD-YAHOO. In particular, the fact that QBD-W gen-
erates query terms that do not appear in the document makes the
returned results more “serendipitous”; the returned documents cap-
ture a more implicit notion of relevance, and users tend to prefer

0.5

0.6

0.7

0.8

0.9

r
ie
v
e
d
d
o
c
u
m
e
n
ts

0

0.1

0.2

0.3

0.4

1 2 3 4 5

P
r
e
c
is
io
n
a
t
k
r
e
t
r

k

QBD Wiki (Agreement >=2)

QBD Wiki (Agreement >=3)

QBD Wiki (Agreement >=4)

Figure 7: Retrieval precision of QBD-W.

lmax time (seconds)
1 0.160
2 1.142
3 10.262
4 57.915
5 143.828

Table 4: QBD-W run times for different lmax.

the returned results. In fact, the results of QBD-W consistently out-
perform those of QBD-MI, QBD-TFIDF, and QBD-YAHOO across
all values of k and for all different annotator agreement levels. This
higher user satisfaction is a direct result of the “novelty” of the re-
sulted documents compared to the initial query-document. The re-
sults of QBD-MI, QBD-TFIDF (and in a lesser degree QBD-YAHOO)
tend to contain documents that discuss the same topic as the query-
document, and tend to repeat the same points of view. In contrast,
the results by QBD-W tend to highlight some other, unexpected
aspect of the same topic.
Performance: The runtime overheads of our techniques are mod-
est. On a 2.4GHz AMD Opetron processor, both QBD-TFIDF and
QBD-MI require under 300 msecs, of which bulk of the computa-
tion time is spent in part-of-speech tagging the document. Access
to QBD-YAHOO web service takes close to 330 msecs including
network latency. Run times for running RelevanceRank algorithm
on the wikipedia graph for a typical document as lmax is varied are
displayed in Table 4. Recall that, for the purpose of computing Rel-
evanceRank scores, parts of Gw at distance greater than lmax from
the seed set can be ignored. As lmax increases, the size of subgraph
over which RelevanceRank needs to be computed increases drasti-
cally (due to heavy interlinking activity in wikipedia), leading to
higher running times. Setting lmax = 2 or lmax = 3 works well
in practice. Experiments reported in the previous subsection used
lmax = 3.

7. CONCLUSIONS
We have presented techniques to extract candidate phrases from

a document in order to utilize them as seed queries to search en-
gines and in particular to BlogScope, a search engine for blogs.
We have presented an evaluation using Amazon’s MTurk service
demonstrating that our retrieval results are of high quality as judged
by independent annotators. We believe that the problem of cross
referencing documents from different sources is going to become
highly significant as the information produced online by services
and individuals continues to grow. These features are implemented
in BlogScope [4], and we will soon make them available through
www.blogscope.net.

8. REFERENCES
[1] Aalbersberg, I. Incremental Relevance Feedback. In SIGIR, 1992.
[2] Bansal, N., Chiang, F., Koudas, N., Tompa, F. W. Seeking Stable Clusters in the

Blogosphere. In VLDB, 2007.

[3] Bansal, N., Koudas, N. BlogScope: A System for Online Analysis of High
Volume Text Streams In VLDB, 2007.

[4] BlogScope http://www.blogscope.net/about/
[5] Church, K. W., Hanks, P. Word Association Norms, Mutual Information and

Lexicography. In ACL, 1989.
[6] Chandel, A., Hassanzadeh, O., Koudas, N., Sadoghi, M. Srivastava., D.

Benchmarking Declarative Approximate Selection Predicates. In SIGMOD,
2007.

[7] Crestani, F. Application of Spreading Activation Techniques in Information
Retrieval. In Artificial Intelligence Review, 1997.

[8] Cucerzan, S. Large-Scale Named Entity Disambiguation Based on Wikipedia
Data. In EMNLP-CoNLL, 2007.

[9] Dagan, I., Church K. Termright: Identifying and Translating Technical
Terminology In ANLP 1994.

[10] Efthmiadis, E. Query Expansion. In Annual Review of Information Science and
Technology, 31:121-187, 1996.

[11] Suchanek, M. F., Kasneci, G., Weikum, G. Yago: a core of semantic knowledge.
In WWW, 2007.

[12] Fagan, J. Automatic Phrase Indexing for Document Retrieval: An Examination
of Syntactic and Non-Syntactic Methods. In SIGIR, 1987.

[13] Feller, W. An Introduction to Probability Theory and Its Applications, Wiley,
1968.

[14] Frantzi, K. T. Incorporating Context Information for the Extraction of Terms. In
ACL, 1997.

[15] Gravano, L., Ipeirotis, P., Koudas, N., Srivastava, D. Text Joins for Data
Cleasing and Integration in an RDBMS. In WWW, 2003.

[16] Gyongyi, Z., Garcia-Molina, H., Petersen, J. Combating Web Spam with
TrustRank. In VLDB, 2004.

[17] Harman, D. Relevance Feedback Revisited. In SIGIR, 1992.
[18] Haveliwala, T. Topic-Sensitive PageRank. In WWW, 2002.
[19] Ide, E. New Experiments in Relevance Feedback. In The SMART Retrieval

System - Experiments in Automatic Document Processing, Prentice-Hall, 1971.
[20] Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet Physics Doklady 1966.
[21] MacDonald, C., He, B., Plachouras, V., Ounis, I. University of Glasgow at

TREC 2005: Experiments in Terabyte and Enterprise Tracks with Terrier. In
TREC, 2005.

[22] Manning, C., Schutze, H. Foundations and Statistical Natural Language
Processing, MIT Press, 1989.

[23] Medelyan, O. Computing Lexical Chains with Graph Clustering In ACL 2007.
[24] Medelyan, O., Witten, I. Thesaurus Based Automatic Keyphrase Indexing In

JDCL 2006.
[25] Mitra, M., Buckley, C., Singhal, A., Cardie, C. An Analysis of Statistical and

Sytactic Phrases. In RIAO Conference, 1997.
[26] Mittendorf, E., Mateev, B., Schauble, P. Using the Co-occurrence of Words for

Retrieval Weighting. In Information Retrieval, 3(3): 243-251, 2000.
[27] Amazon Mechanical Turk. http://www.mturk.com
[28] Pantel, P., Lin, D. A statistical corpus based term extractor Lecture notes in AI,

2001, Springer-Verlag
[29] Part-of-speech tagging. http://en.wikipedia.org/wiki/Part-of-speech_tagging
[30] Rocchio, J. Relevance Feedback in Information Retrieval. In The SMART

Retrieval System - Experiments in Automatic Document Processing,
Prentice-Hall, 1971.

[31] Salton, G. and McGill, M. J. Introduction to modern information retrieval.
McGraw-Hill, 1983.

[32] Spink, A., Jansen, B., Ozmultu, H. Use of Query Reformulation and Relevance
Feedback by Excite Users. In Internet Research: Electronic Networking
Applications and Policy, 2000.

[33] Tomokiyo, T., Hurst, M. A Language Model Approach to Keyphrase Extraction
In ACL 2003

[34] Turney, P. D. Learning Algorithms for Keyphrase Extraction. In Information
Retrieval, 2000.

[35] Vechtomova, O., Karamuftuoglu, M. Approaches to High Accuracy Retrieval:
Phrase-Based Search Experiments in the HARD Track. In TREC, 2004.

[36] Witten, I., Paynter, G., Frank, E., Gutwin, C., Manning, G. KEA: Practical
Automatic Keyphrase Extraction. In ACM DL 1999.

[37] Yahoo Term Extraction Web Service.
http://developer.yahoo.com/search/content/V1/termExtraction.html

[38] Zaragoza, H., Rode, H., Mika, P., Jordi, A., Ciaramita, M., Attardi, G. Ranking
Very Many Typed Entities on Wikipedia. In CIKM, 2007.

[39] The Future of Social Networking: Understanding Market Stratigic and
Technology developments. Datamonitor, 2007.

