
Modeling Query-Based Access to Text Databases

Eugene Agichtein Panagiotis Ipeirotis Luis Gravano
Columbia University

{eugene,pirot,gravano}@cs.columbia.edu

ABSTRACT
Searchable text databases abound on the web. Applications that
require access to such databases often resort to querying to ex-
tract relevant documents because of two main reasons. First, some
text databases on the web are not “crawlable,” and hence the only
way to retrieve their documents is via querying. Second, applica-
tions often require only a small fraction of a database’s contents, so
retrieving relevant documents via querying is an attractive choice
from an efficiency viewpoint, even for crawlable databases. Of-
ten an application’s query-based strategy starts with a small num-
ber of user-provided queries. Then, new queries are extracted –in
an application-dependent way– from the documents in the initial
query results, and the process iterates. The success of this com-
mon type of strategy relies on retrieved documents “contributing”
new queries. If new documents fail to produce new queries, then
the process might stall before all relevant documents are retrieved.
In this paper, we develop a graph-based “reachability” metric that
allows to characterize when an application’s query-based strategy
will successfully “reach” all documents that the application needs.
We complement our metric with an efficient sampling-based tech-
nique that accurately estimates the reachability associated with a
text database and an application’s query-based strategy. We report
preliminary experiments backing the usefulness of our metric and
the accuracy of the associated estimation technique over real text
databases and for two applications.

1. INTRODUCTION
Searchable text databases abound on the web. Applications that

require access to such databases often resort to querying to extract
relevant documents because of two main reasons. First, some text
databases on the web are not “crawlable,” and hence the only way to
retrieve their documents is via querying. Second, applications often
require only a small fraction of a database’s contents, so retrieving
relevant documents via querying is an attractive choice from an ef-
ficiency viewpoint, even for crawlable databases. Various query-
based methods (e.g., [4, 1]) have been proposed in the past for
retrieving and extracting the information stored in databases via
querying. These algorithms share the general approach of starting
with a small set of queries, retrieving some documents from the
database, extracting some information from them, and potentially
augmenting the set of queries using the newly extracted informa-
tion.

More specifically, there are two tasks that have been success-
fully addressed through querying: extracting information from text
databases, and building text database summaries.

Task 1: Information Extraction: This is the task of extracting
structured relations from unstructured (i.e., natural language) text.

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12–13, 2003, San Diego, California.

The structured relations can be used for answering queries or for
data mining tasks. For example, a user may be interested in auto-
matically building a structured table of reported disease outbreaks
DiseaseOutbreaks(diseaseName, country, date) from news articles.
Unfortunately, exhaustively scanning every news article for poten-
tial events of interest is (unnecessarily) slow. It has been shown
that querying can be used to significantly improve the efficiency of
information extraction [1]. The goal is to extract all tuples for a
target relation from a database, starting by using a few seed tuples
as queries and then successively querying for each newly extracted
tuple. Intuitively, the documents that contain a query tuple are ex-
pected to contain other previously unseen tuples as well:

(0) while seed has an unprocessed tuple t
(1) retrieve up to MaxResults documents matching t
(2) extract new tuples te from these documents
(3) augment seed with te

Thus, new tuples are discovered by querying for the known tuples,
and when the algorithm terminates, all of the tuples “reachable”
from the seed tuples will be discovered. In [1] it was observed that
while in some cases this simple “bootstrapping” strategy –referred
to as Tuples in [1]1– succeeded in reaching most of the useful docu-
ments in the database (and thereby in extracting most of the tuples
in the target relation), in other cases this algorithm only discov-
ered a small fraction of the available tuples. As another example,
Shah [10] uses a query strategy related to Tuples to extract people’s
names and build networks of “experts.” In this work we identify
and analyze the intrinsic property of text databases with respect to
an extraction task that determines the success of this general ap-
proach. But first, we present a related task that can also be modeled
using our techniques.

Task 2: Text Database Summary Construction: Many valu-
able text databases on the web have non-crawlable contents that
are “hidden” behind search interfaces. Metasearchers are helpful
tools for searching over many such databases at once through a uni-
fied query interface. A critical task for a metasearcher to process a
query efficiently and effectively is the selection of the most promis-
ing databases for a query, a task that typically relies on statistical
summaries of the database contents. Unfortunately, web-accessible
text databases do not generally export summaries of their contents.
In the past, query-based algorithms have been proposed to auto-
matically build such summaries for web-accessible databases [4,
8]. The goal is to construct an augmented dictionary of all words
that appear in the database, and their frequency. One of the algo-
rithms described in [4] automatically discovers the content of a text
database by first querying the database with some seed words, and
then extracting new words from the retrieved documents to con-
struct new queries. A somewhat simplified version of this algo-
rithm (e.g., the stopping condition in [4] is different, for execution
efficiency) is as follows:
1Reference [1] introduces alternative querying strategies –notably
QXtract– that do not follow this general structure.



(0) while seed has an unprocessed word t

(1) retrieve up to MaxResults documents matching t

(2) extract new words te from these documents

(3) augment seed with te

The output of this algorithm is a set of words and their approximate
frequency in the database. If the extracted summary is incomplete,
the accuracy of the database selection step might suffer, and so will
the overall effectiveness of the metasearching process.

We observe that the querying algorithms for both Task 1 and Task
2 share a key characteristic: only the documents that are “reach-
able” from the initial queries will be discovered by these algo-
rithms. In this paper, we present a querying model that describes
the general querying approaches used for Tasks 1 and 2. In Sec-
tion 2 we model the two tasks using our “reachability” graph for-
malism, and derive a single reachability metric based on the con-
nectivity of this graph, to predict the success or failure of a general
class of algorithms for Tasks 1 and 2. We illustrate the construction
of the reachability graph for real text databases in Section 3. Then,
in Section 4, we provide an efficient sampling-based technique for
estimating the reachability of a given database. We evaluate our
estimation techniques in Section 5 over real text databases for the
tasks described above, showing that we can successfully estimate
the reachability of a database by examining only a small document
sample from the database. We conclude the paper in Section 6 with
discussion of future work and potential applications of our tech-
niques.

2. MODEL
In this section we present our model of query-based access to

text databases. We first provide the intuition behind our model us-
ing Tasks 1 and 2 (Section 2.1), and develop this intuition into a
model using the “reachability” graph formalism (Section 2.2). We
then present a key observation about the general structure of the
reachability graphs that emerge when querying text databases (Sec-
tion 2.3), which will lay a foundation for our estimation techniques
of Section 4.

2.1 Querying Text Databases Revisited
The common characteristic of the “bootstrapping” approaches

that have been applied to Tasks 1 and 2 is that they start with a
small set of seed queries, and use the information extracted from
the retrieved documents for additional querying.

For example, consider the Task 1 scenario, illustrated in Figure 1,
and assume that the initial set of seed tuples consists of one tuple,
t1. The database is queried using t1 as described in Section 1. As
a result, the document d1 is retrieved. From this document, we
extract the new tuple t2. After adding t2 to the seed, and sending
it as a query to the database, we extract the new tuple t3, which in
turn retrieves the document d4 that contains the tuple t4. Note that
t3 also retrieves the document d2, which “rediscovers” the tuple t2.
As we can see, the tuples t2, t3, and t4 are all reachable from t1,
as shown in the resulting “reachability” graph on the right side of
Figure 1. In contrast, tuple t5 is not reachable from any of these
tuples. As a result, t5 will not be discovered by the algorithm if t1
is the only “seed” tuple.

The procedure described above can be summarized using the
graphs in Figure 1. By analyzing the structure of these graphs we
can get a better understanding of the process and predict whether
a particular query-based access method can succeed in reaching all
(or a significant fraction of) the content of interest stored in the
database. With this goal in mind, we now formally present our
query-based reachability model.

T D

t1

t3

t2

t4

d1

d3

d2

d4

t2

t1

t5

t
3

t4

t5 d5

Figure 1: Portion of the querying and reachability graphs of a
database.

2.2 Querying and Reachability Graphs
First, we define the “queries” more formally and then we define

our graph-based representation of querying. Recall that for Task
1 the queries consisted of the conjunctions of the extracted tuple
attributes, while for Task 2 the queries were the words extracted
from the retrieved documents. Both types of queries can be mod-
eled as instances of a general unit of information, a token, which
is extracted from a document –in an application-specific way– and
can be used for querying.

DEFINITION 1.: We define a token as a unit of information that
can be extracted from a document and can be converted into a
Boolean query, perhaps involving phrases. ♦

The actual choice of what is considered a token is application-
specific. The tokens might be the words, or the named entities
(e.g., “Microsoft Corp.”) that appear in the documents, or even tu-
ples (such as 〈flu, aspirin〉, which can be transformed to the query
“flu” AND “aspirin”) for an automatically extracted relation (such
as Treats(Disease, Drug)). Using this definition of a token, we can
now define the querying graph more formally.

DEFINITION 2.: We define the querying graph QG(T,D, E)
of a database with respect to some task’s querying strategy as a
bipartite graph containing tokens T and documents D as nodes,
and a set of edges E between T and D nodes. A directed edge
from a document node d to a token node t means that t occurs in d.
A directed edge from a token node t to document node d means that
d is returned from the database as a result to a query that consists
of the token t. ♦

For example, suppose the token t1=〈flu, aspirin〉 retrieves a docu-
ment d that also contains another token t2=〈cold, tylenol〉. Then,
we insert an edge into QG from t1 to d, and also an edge from d to
t2. We consider an edge d → t, originating from a document node
d and pointing to a token node t, as a “contains” edge and an edge
t → d, originating from a token node t and pointing to a document
node d, as a “retrieves” edge. Notice that the existence of the edge
t → d in the graph does not imply the existence of the edge d → t,
and the existence of the edge d → t in the graph does not imply the
existence of the edge t → d.

The querying graph representation can accommodate constraints
that appear while querying real text databases. For example, a
database might have an upper bound MaxResults on the number
of documents returned as a result to a query. This is modeled by
constraining any token vertex in the querying graph to have out-
degree no larger than MaxResults. Another real-life constraint for
a query-based algorithm might be an upper limit MaxDocs on the
total number of documents retrieved. In this case, the algorithm to
find all tokens that are reachable from an initial seed set (which can
be considered as a walk on the graph) should not cross more than
MaxDocs edges of the type t → d.

While the querying graph thoroughly describes the querying pro-
cess, what we are really interested in is the reachability graph of the
database, which is derived directly from the querying graph.



In OutCore
(strongly

connected)

Figure 2: Structure of connected components in directed
graphs.

DEFINITION 3.: We define the reachability graph RG(T, E) of
a database with respect to some task’s querying strategy as a graph
whose nodes are the tokens T that occur in the database, and whose
edge set E is such that a directed edge ti → tj means that tj occurs
in a document that is retrieved by ti. ♦

In Figure 1(b) we show the reachability graph derived from the
underlying querying graph, illustrating how its edges are added.
Since token t2 retrieves document d3 that contains token t3, the
reachability graph contains the edge t2 → t3. Intuitively, a path
in the reachability graph from a token ti to a token tj means that
there is a set of queries that start with ti and lead to the retrieval of
a document that contains the token tj . In the example in Figure 1,
there is a path from t2 to t4, through t3. This means that query t2
can help discover token t3, which in turn helps discover token t4.
The absence of a path from a token ti to a token tj in the complete
reachability graph means that we cannot discover tj starting from
ti. This is the case, for example, for t2 and t5 in Figure 1.

The reachability graph is a directed graph, and its connected
components can be described using the “bowtie” structure in [3].
Consider a strongly connected component Core in a reachability
graph. By definition, every token in the Core is reachable via a
directed path from every other token in the Core. Additionally,
the tokens in the Core are reachable via a directed path from other
tokens not in the Core, to which we refer as the In component (Fig-
ure 2). Finally, other nodes not in the Core or the In components
are reachable via a directed path from the Core tokens. We refer to
these nodes as the Out component (Figure 2). For example, con-
sider the strongly connected component that consists of nodes t2
and t3 in Figure 1(b). The In component for this Core consists of
the node t1, while the Out component contains the token t4.2

Having described the general shape of connected components in
the reachability graph, we now turn to a quantitative analysis of
the relative sizes of the different parts of the graph. We conjecture
that the reachability graph of a database for tasks such as Tasks
1 and 2 tends to belong to the well-studied family of power-law
graphs. Power-law distributions have been known to arise in text
domains [12]; additionally, power-law graphs have recently been
observed to be a good model for graphs in related domains such as
the web [3] and the Internet [7] graphs. One property of interest
of power-law graphs is that the size of their connected components
can be estimated using only a small number of parameters, as we
describe next.

2.3 Reachability of Power-Law Graphs
A power-law graph [2] is a graph that has vertices with degrees

that follow a power-law distribution. The power-law distribution
states that the expected number of vertices y with degree k is:

y = eα · k−β ⇒ ln(y) = α − β · ln(k) (1)

where the parameters α and β are the intercept and the slope of the

2Additionally, other nodes not in the In, Out, or Core might still
be connected to these components (e.g., the nodes in the “tendrils”
of the component [3]). These additional nodes do not help in our
reachability analysis, and hence we do not consider them further.

line with best fit to the degree distribution plotted on the log-log
scale.

Power-law graphs are actively studied in the graph theory com-
munity. Recent results [2, 5] allow to efficiently estimate properties
of a given power-law graph. Specifically, Aiello, Chung, and Lu [2,
5] show that by using the average degree of the vertices in a ran-
dom undirected power-law graph and the parameters α and β of
the power-law distribution, it is possible to predict the size of the
biggest connected component CG of a graph, also called the “giant
component”. If the giant component emerges, then the remaining
connected components are expected to be small, with a size distri-
bution that also follows the power law.

We conjecture (and we study this experimentally in Section 3)
that the reachability graphs in real text databases for our retrieval
tasks can be modeled as directed power-law graphs. We use the gi-
ant strongly connected component Core to define the giant compo-
nent CRG in the reachability graph RG. More specifically, we de-
fine CRG as the biggest strongly connected component Core, with
its associated In and Out components in the “bowtie” structure de-
scribed above. According to the power-law, if a giant strongly con-
nected Core component exists, then the remaining strongly con-
nected components (and their associated In and Out components)
are expected to be small.

We can now define the reachability of a text database with re-
spect to some task’s querying strategy. As we discussed, in order
for tasks such as Tasks 1 and 2 to succeed, the extracted tokens must
help discover other new tokens, which by definition are reachable
from the previously discovered tokens. As we discussed above, if
a large component CRG exists in the reachability graph RG, then
a token not in CRG necessarily belongs in a small component and
can help discover only a small number of new tokens. On the other
hand, any token in the In or Core portions of CRG will allow the
querying strategy to discover all of the tokens in the Core and Out
portions of CRG. In other words, the relative size of the Core and
the Out portions of CRG can be used to predict the performance
of query-based algorithms for tasks such as Tasks 1 and 2 for exe-
cutions where at least one initial seed token happens to be part of
the In or Core portions of CRG. Thus, we define the reachability
of a text database as the fraction of the nodes T of the reachability
graph that belong to the Core and Out portions of the giant compo-
nent CRG:

reachability =
|Core(CRG)| + |Out(CRG)|

|T |
(2)

In the rest of the paper, we turn to the problem of how to effi-
ciently approximate the reachability of a database for some task’s
querying strategy.

3. REACHABILITY OF REAL DATABASES
In this section we show that the reachability graphs constructed

over real text databases for Tasks 1 and 2 have an approximate
power-law degree distribution. Hence, we conjecture that power-
law graphs can model the structure of reachability graphs for these
retrieval tasks. We illustrate our observations using two real text
databases, one for each of our retrieval tasks.
NYT: This database is a collection of 135,000 newspaper articles
from The New York Times, published in 1995. We use this database
for an instance of Task 1: to retrieve all of the tuples describing dis-
ease outbreaks (e.g., 〈Typhus, Belize, June 1995〉), extracted from
the NYT database using Proteus [11], a sophisticated information
extraction system developed at New York University. A total of
8,859 tuples were extracted from the collection using an exhaustive
scan of the database (which required over two weeks to complete).
In this case, the tokens correspond to the tuples of the target rela-
tion, and the queries are constructed using the conjunction of the



(a) (b) (c)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5
log(degree)

lo
g

(f
re

q
u

en
cy

)

actual
best fit

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6
log(degree)

lo
g

(f
re

q
u

en
cy

)

actual
best fit

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6
log(degree)

lo
g

(f
re

q
u

en
cy

)

actual
best fit

Figure 3: The outdegree distribution of the NYT reachability
graph for Task 1 when (a) MaxResults = 10, (b) MaxResults =
50, and (c) MaxResults = 200.

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
log(component size)

lo
g

(f
re

q
u

en
cy

)

(a) (b) (c)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
log(component size)

lo
g

(f
re

q
u

en
cy

)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
log(component size)

lo
g

(f
re

q
u

en
cy

)

Figure 4: The component size distribution of the NYT reacha-
bility graph for Task 1 when (a) MaxResults = 10, (b) MaxRe-
sults = 50, and (c) MaxResults = 200.

first two attributes of each tuple (e.g., “Typhus” AND “Belize”).
The complete reachability graph RG is computed by querying the
database with all the 8,859 tuples extracted beforehand from the
collection. To simulate constraints that search engines might im-
pose, we limit the maximum number of documents, MaxResults,
retrieved for each query.

We report the degree distribution of the resulting reachability
graphs of the NYT database with respect to Task 1 in Figures 3(a)-
(c) when MaxResults is set to 10, 50, and 200 respectively. We
show the power-law distribution that best fits the data. As we can
see, the outdegree distribution is closely related to the fitted distri-
bution. We report the size distribution of connected components in
Figure 4, which also agrees with the size distribution expected for
power-law graphs.
20NG: This database is the “20 newsgroups” collection of approx-
imately 20,000 Usenet articles, from the UCI Machine Learning
Repository. We now describe the construction of the reachability
graph with respect to Task 2 (building a comprehensive summary
of word document frequencies in the database). In this task, the
tokens are the words in the documents. Such summaries typically
ignore stopwords, and therefore we do not include stopwords in
our reachability graph. Figures 5 (a) and (b) report the outdegree
distribution of the reachability graph constructed for Task 2, for
MaxResults equal to 1 and 10, respectively. The outdegree distri-
bution follows a power-law form for a large part of the distribution.
We can model the distribution more accurately using extensions
of the pure power-law model (e.g., see [9]), but a full discussion
of other candidate distributions is beyond the scope of this paper.
For MaxResults=1 and 10 we have just one connected component,
which includes all the tokens of the reachability graph.

We conjecture that these observations will hold for the reacha-
bility graphs constructed over other text databases as well. We will
explore this further experimentally in our future work. For the text
databases where our conjecture holds, we will be able to predict the
reachability of the databases (and consequently the performance of
algorithms for Tasks 1 and 2) without constructing the complete
reachability graph. Instead, we can simply estimate the parame-

(a) (b)

0

1

2

3

4

5

6

4 6 8
log(degree)

lo
g(

fre
qu

en
cy

)

actual
best fit

1

2

3

4

5

6

7

2 4 6 8
log(degree)

lo
g(

fre
qu

en
cy

)

actual
best fit

Figure 5: The outdegree distribution of the 20NG reachability
graph for Task 2 when (a) MaxResults = 1, and (b) MaxResults
= 10.

ters of the outdegree distribution of the corresponding reachability
graphs, as discussed next.

4. ESTIMATING GRAPH PROPERTIES
In this section we describe how to estimate the reachability of

a database for a query strategy. Specifically, Section 4.1 shows
that we can base our estimates on the average node outdegree d
in the reachability graph, which in turn we can estimate using a
small document sample from the database. Section 4.2 describes
our document sampling method.

4.1 Estimating Reachability
As we discussed, in a power-law graph at most one giant con-

nected component is expected to emerge, and the rest of the con-
nected components are expected to be small. Thus, the reachability
estimation for power-law random graphs reduces to estimating the
size of the giant component, if any.

Chung and Lu [5] showed that for an undirected power-law graph
G with values of β < β0 (β0 ≈ 3.475)3, a giant component
emerges, while for smaller values of β all components are expected
to be small. More specifically, [5] estimates the relative size of the
giant component CG when β < β0 as follows:

|CG|

|T |
≥

�� � 1/d · (1 − 2
√

de
) if d ≥ e

1/d · (1 − 1+log d

d
) if 1 < d < e

0 if 0 < d ≤ 1

(3)

where d is the average degree of G. Note that the estimate depends
only on d.

We believe that Equation 2 can be applied to estimate the size of
the giant component CRG in our directed reachability graph RG,
and consequently to estimate the reachability of a database with re-
spect to a given extraction task, where d in the equation above is
the average outdegree of RG. Note that while reachability (Equa-
tion 2) is defined in terms of the Core and Out portions of CRG,
the equation above predicts the relative size of the complete giant
component in the undirected graph. Therefore, the value predicted
by Equation 3 will overestimate the reachability. Unfortunately,
we are not aware of any similarly compact theoretical results to es-
timate the sizes of the specific portions of the giant component in
directed graphs. As such results are developed, we could use them
to improve the quality of our estimation.

Recall that by applying the results in [5] we can estimate the
reachability of a database with respect to a given task by estimat-
ing the average outdegree d. We now describe an efficient docu-
ment sampling technique that can be used to estimate d based on
an observed (small) sample of the reachability graph.

3β is the absolute value of the slope of the linear fit to the degree
distribution. See Section 2.3.



4.2 Sampling Text Databases for Estimating
Reachability

In order to estimate d, we retrieve a small document sample DS

and construct a reachability graph RGS for DS . By definition,
RGS is a subgraph of the complete reachability graph RG. We
construct RGS as follows. We start with a small number (e.g., 50)
of seed tokens Tseed ⊂ T . We then query the database for each
token ti ∈ Tseed, retrieving up to MaxResults documents for each
query. For each document d retrieved by a token ti, we extract each
token tj in d. For each tj , we insert an edge ti → tj into RGS .

Having obtained our sample subgraph RGS , we can use it to
estimate parameters of interest for the complete reachability graph
RG. Specifically, we estimate d, the average outdegree of RG, as
the average outdegree of the nodes in Tseed. Note that the outde-
gree of each node ti ∈ Tseed in RGS is equal to the outdegree of ti

in RG. Since we draw Tseed randomly, we expect that the average
outdegree of the corresponding vertices in the partial reachability
graph will reflect the average outdegree of the complete RG.

The estimate of the average outdegree is used to predict the rel-
ative size |CRG|/|T | of the giant component as described in Equa-
tion 3, which approximates the reachability of the text database in
question (Equation 2).

5. EXPERIMENTS
We now report experimental results for the technique that we

described in Section 4. In Section 5.1 we describe the experimental
setup, and in Section 5.2 we report the results of our preliminary
experiments.

5.1 Experimental Setup
To evaluate the accuracy of our estimation technique, we con-

structed the reachability graph for the NYT and 20NG databases
(Section 3). The reachability graph for NYT was constructed for
Task 1 and the reachability graph for 20NG was constructed for
Task 2, for different values of MaxResults, one of the constraints
that may be imposed by the text database. For each reachability
graph, we compute the size |CRG| of its giant component using the
STRONGLY-CONNECTED-COMPONENTS algorithm from [6] to com-
pute the Core, and subsequently the In and Out components. Us-
ing |Core(CRG)| and |Out(CRG)| we compute the reachability
values (Equation 2), which are reported in Figure 6, and serve as
the “gold standard” for evaluating the estimation accuracy of our
method.

Observe that almost all of the tokens for Task 2 over 20NG are
reachable for all values of MaxResults (i.e., a complete database
summary can be constructed with exhaustive querying)4. In con-
trast, a large fraction of the tokens for Task 1 over the NYT database
are not reachable for values of MaxResults below 200 (i.e., by fol-
lowing the approach of Task 1 we will not be able to reach a large
fraction of the tuples in the target relation no matter how many
queries we issue to the database).

For each database and each value of MaxResults, we apply the
sampling technique of Section 4.2 by starting with a different num-
ber of seed tokens. Specifically, we sample the corresponding da-
tabase using S randomly chosen seed tokens5 from T to construct
RGS . We experimented with S = 10, 50, 100, and 200, which
means that we would send 10, 50, 100, and 200 token queries to
the database to estimate its reachability. The maximum number of
documents retrieved during sampling has a strict upper bound equal

4The CRG for MaxResults = 1 consists of Core, which contains
95.5% of all tokens in CRG, and In, which contains the rest.
5We assume that we can somehow obtain (e.g., as user input) an
initial seed set of the appropriate size S. When this is not possible,
we can repeatedly obtain random document samples until S seed
tokens are extracted.

NYT 20NG
MaxResults Core In Out reachability reachability

1 0.001 0.003 0 0.001 0.955
10 0.078 0.156 0.063 0.141 1
50 0.260 0.159 0.200 0.460 1

100 0.334 0.132 0.274 0.608 1
200 0.388 0.102 0.334 0.722 1
1000 0.477 0.036 0.429 0.906 1

Figure 6: The relative size of the subcomponents of CRG for the
NYT and 20NG databases and for Tasks 1 and 2 respectively,
for different values of MaxResults.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MR=1 MR=10 MR=50 MR=100 MR=200 MR=1000

MaxResults

R
ea

ch
ab

ili
ty



S=10 S=50 S=100 S=200 Real Graph

Figure 7: The reachability estimates for the NYT database for
Task 1, for different values of MaxResults and seed sample size
S.

to MaxResults · S.

5.2 Experimental Results
We report the estimation results for the NYT database for Task

1 in Figure 7. As we can see, for Task 1 our technique is able to
estimate the reachability of the database with varying success. For
example, when MR = 1 the actual reachability is 0.001. For sam-
ple size S of 100 and 200 queries, we estimated the reachability
to be 0.015 and 0.002, respectively. While this estimate has high
relative error, it is good enough, as it indicates that an algorithm
for Task 1 will not succeed in retrieving all necessary documents if
MaxResults = 1. For the remaining values of MaxResults we still
generally overestimate the reachability of the database, but our es-
timates are closer to the real value. As we discussed above, the
overestimates are partly caused by using the prediction of Equa-
tion 3 to estimate the relative size of only the Core and Out por-
tions of the giant component. Another possible cause of error is
the divergence of real reachability graphs from the idealized, pure
power-law model, and may be remedied by extending our work to
include refinements of the power-law model. While not exact, our
estimates are still indicative of the general structure of the reacha-
bility graph, and consequently can be used as a rough predictor of
expected performance of algorithms for Task 1, as we will discuss
in the next section.

Figure 8 reports the results for estimating reachability of the
20NG database with respect to Task 2. The results show that our
estimation technique was able to accurately detect that the 20NG
database is completely reachable for Task 2. For example, while
the Core for MR = 10 includes the complete graph (i.e., the reach-
ability is 1), we estimated the reachability to be 0.95 by submitting
only 10 queries, which allows us to predict that general approaches
for Task 2 will be successful for this database.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MR=1 MR=10

MaxResults

R
ea

ch
ab

ili
ty



S=10 S=50 S=100 S=200 Real Graph

Figure 8: The reachability estimates for the 20NG database for
Task 2, for different values of MaxResults and seed sample size
S.

6. DISCUSSION
We presented a model for query-based access to text databases

for general information extraction and database summary construc-
tion tasks. To the best of our knowledge, this is the first attempt to
model query-based access to text databases, and our work paral-
lels the efforts of modeling the web [3] and Internet [7] topologies.
Based on this model, we developed the reachability metric, which
indicates the expected performance of a general class of algorithms
for these tasks. To complement our model, we presented an effi-
cient technique for computing approximate values of reachability
for a database with respect to the desired task.

We believe that our graph-based abstraction of the querying pro-
cess can be used to model a variety of query-based access meth-
ods. Currently, most query-based algorithms are only empirically
tested, with limited theoretical justification. We plan to model other
query-based algorithms and use results from graph theory to pro-
vide theoretical justification for the observed experimental results.

In this work, our predictions for Tasks 1 and 2 are corroborated
by empirical studies presented in [1] and [4] respectively. Refer-
ence [1] reports using Tuples, an implementation of the strategy
for Task 1 for extracting the DiseaseOutbreaks relation over the
NYT database with MaxResults=50. We found that all but a hand-
ful of the tuples retrieved by Tuples in [1] are in the Core ∪ Out
portions of the giant component of the corresponding reachability
graph, and the resulting recall of the strategy is therefore correctly
predicted by the reachability value of 0.46 (Figure 6). If higher
recall is desired, our reachability predictions could be used to ei-
ther increase –if possible– the maximum number of documents,
MaxResults, returned for each query (at the expense of precision),
or choose an alternative querying strategy such as QXtract [1],
which generates queries automatically by following a different ap-
proach. On the other hand, our model predicted that the algorithm
proposed by Callan et al. [4] for Task 2 can successfully discover all
the words that appear in the text database, as long as no limitation
on the number of queries issued is imposed.

Finally, other properties of the reachability graph are also of in-
terest and can be estimated using a small number of parameters.
The edge density of the reachability graph is an indication of the
rate at which an algorithm can obtain new information by query-
ing a text database. The diameter of the graph shows the minimum
required effort to retrieve all the information stored in the database.

Additionally, the querying graph is also a useful tool for study-
ing the efficiency of different algorithms. In this paper we have
seen that the reachability graph can be used to predict whether a
method can succeed in retrieving all the tokens stored in a database.
However, the reachability graph cannot reveal how many queries

are required to retrieve these tokens. In contrast, this informa-
tion could be derived from the querying graph. For example, the
reachability metric predicts that the algorithm in [4] for Task 2
can retrieve all the tokens from the 20NG database. However,
to achieve the goal of retrieving all the tokens, we have to issue
thousands of queries and retrieve thousands of documents from the
database, which is modeled by crossing thousands of edges in the
corresponding querying graph. By issuing only a small number
of queries and retrieving up to a total of 300-500 documents, as
suggested in [4], it is possible to retrieve only (arguably the most
“important”) 15%-20% of the tokens in 20NG, which can be pre-
dicted by analyzing the querying graph for this task. In the future,
we would like to further study the properties of the querying graph
to determine how effective an algorithm can be if there is a limit on
the number of queries or on the number of documents that can be
retrieved from the database.

We believe that our model can serve as inspiration to develop
even more comprehensive models and provides useful abstraction
tools for the study of a variety of query-based algorithms.

ACKNOWLEDGEMENTS : This material is based upon work sup-
ported by the National Science Foundation under Grants No. IIS-
9733880 and No. IIS-9817434. We thank Michael E. Agishtein
for many fruitful discussions, and Regina Barzilay for her helpful
comments.

7. REFERENCES

[1] E. Agichtein and L. Gravano. Querying text databases for
efficient information extraction. In Proceedings of the 19th
IEEE International Conference on Data Engineering (ICDE
2003), 2003.

[2] W. Aiello, F. Chung, and L. Lu. A random graph model for
massive graphs. In Proceedings of the ACM Symposium on
Theory of Computing (STOC 2000), 2000.

[3] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. L. Wiener.
Graph structure in the web. In Proceedings of the Ninth
International World Wide Web Conference (WWW9), pages
309–320, 2000.

[4] J. Callan and M. Connell. Query-based sampling of text
databases. ACM Transactions on Information Systems,
19(2):97–130, 2001.

[5] F. Chung and L. Lu. Connected components in random
graphs with given degree sequences. Annals of
Combinatorics, 2002.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. McGraw-Hill Science, Mar. 1990.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the Internet topology. In SIGCOMM, 1999.

[8] P. G. Ipeirotis and L. Gravano. Distributed search over the
hidden web: Hierarchical database sampling and selection.
In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002), 2002.

[9] M. Mitzenmacher. A brief history of generative models for
power law and lognormal distributions. In First Workshop on
Algorithms and Models for the Web-Graph, 2001.

[10] M. A. Shah. ReferralWeb: A resource location system guided
by personal relations. Master’s thesis, M.I.T., May 1997.

[11] R. Yangarber and R. Grishman. NYU: Description of the
Proteus/PET system as used for MUC-7. In Proceedings of
the Seventh Message Understanding Conference (MUC-7),
1998.

[12] G. K. Zipf. Human Behavior and the Principle of Least
Effort. Addison-Wesley, 1949.


