Approximate String Joins in a Database (Almost) for Free

Luis Gravano
Columbia University
gravano@cs.columbia.edu

Nick Koudas
AT&T Labs—Research

Abstract

String data is ubiquitous, and its management has
taken on particular importance in the past few
years. Approximate queries are very important on
string data especially for more complex queries
involving joins. This is due, for example, to the
prevalence of typographical errors in data, and
multiple conventions for recording attributes such
as name and address. Commercial databases do
not support approximate string joins directly, and
itis a challenge to implement this functionality ef-
ficiently with user-defined functions (UDFs).

In this paper, we develop a technique for build-
ing approximate string join capabilities on top of
commercial databases by exploiting facilities al-
ready available in them. At the core, our tech-
nique relies on matching short substrings of length
q, called g-grams, and taking into account both
positions of individual matches and the total num-
ber of such matches. Our approach applies to both
approximate full string matching and approximate
substring matching, with a variety of possible edit
distance functions. The approximate string match
predicate, with a suitable edit distance threshold,
can be mapped into a vanilla relational expression
and optimized by conventional relational optimiz-
ers. We demonstrate experimentally the benefits
of our technique over the direct use of UDFs, us-
ing commercial database systems and real data.
To study the 1/0O and CPU behavior of approxi-
mate string join algorithms with variations in edit
distance and-gram length, we also describe de-
tailed experiments based on a prototype imple-
mentation.
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1 Introduction

String data is ubiquitous. To name only a few common-
place applications, consider product catalogs (for books,
music, software, etc.), electronic white and yellow page
directories, specialized information sources such as patent
databases, and customer relationship management data.

As a consequence, management of string data in
databases has taken on particular importance in the past
few years. Applications that collect and correlate data from
independent data sources for warehousing, mining, and sta-
tistical analysis rely on efficient string matching to perform
their tasks. Here, correlation between the data is typically
based on joins between descriptive string attributes in the
various sources. However, the quality of the string infor-
mation residing in various databases can be degraded due
to a variety of reasons, including human typing errors and
flexibility in specifying string attributes. Hence the results
of the joins based on exact matching of string attributes are
often of lower quality than expected. The following exam-
ple illustrates these problems:

Example 1.1 [String Joins] Consider a corporation main-
taining various customer databases. Requests for correlat-
ing data sources are very common in this context. A spe-
cific customer might be present in more than one database
because the customer subscribes to multiple services that
the corporation offers, and each service may have de-
veloped its database independently. In one database, a
customer’'s name may be recordedJabin A. Smith |

while in another database the name may be recorded as
Smith, John . In a different database, due to a typing
error, this name may be recordedJamh Smith . Are-
guest to correlate these databases and create a unified view
of customers will fail to produce the desired output if exact
string matching is used in the joif
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databases. To use such tools for information stored ifem of approximate string joins and we present our pro-
databases, one would either have to process data outsigesal. In Section 4 we present the results of an experi-
the database, or be able to use them as user-defined funtiental study comparing the proposed approach to other ap-
tions (UDFs) in an object-relational database. The formeplicable methods, demonstrating performance benefits and
approach is undesirable in general. The latter approach igresenting performance trends for several parameters of in-
quite inefficient, especially for joins, because relational enterest. Finally, in Section 5 we describe how we can adapt
gines evaluate joins involving UDFs whose arguments in-our techniques to address further problems of interest. In
clude attributes belonging to multiple tables by essentiallyparticular we show how to incorporate an alternate string
computing the cross-products and applying the UDFs in alistance function, namely thelock edit distance (where
post-processing fashion. edit operations on contiguous substrings are inexpensive),
To address such difficulties, we need techniques for efand we address the problem of approxingatbstringoins.
ficiently identifying all pairs ofapproximatelymatching
strings in a database of strings. Whenever one deals Witb Preliminaries
matching in an approximate fashion, one has to specify thé
approximation metric. Several proposals exist for string2.1  Notation
to capture the notion of “approximate equality.” Amon . . .
thoseF,) the notion oédit disg\%cebetweentho gtrings isg We useR, possibly with subscripts, to denote tables,
very popular. According to this notion, deletion, insertion, POSSibly with subscripts, to denote attributes, angos-
and substitution of a character are considered as unit coStP!Y With subscripts, to denote records in tables. We use
operations and the edit distance between two strings is dd€ notationz.4; to refer to attributed, of table , and
fined as the lowest cost sequence of operations that cafy-Ai(t;) to refer to the value in attribut&. 4, of record
transform one string to the other. 4. . i
Although there is a fair amount of work on the problem €t > be a finite alphabet of siz&’|. We use lower-
of approximately matching strings (see Section 6), we ar&aSe Greek Sy”ﬁbg'sy SuchCaSOQSS'b'Y with subscripts, to
not aware of work related to approximately matchaly ~ denote strings irb”. Leto € X* be a string of lengti.
string pairs based on edit distance (or variants of it), as jyve useoli 'J],' l<i<j=<mn, to_c!enote a substring of
needed in approximate strifjgins. Moreover, we are not ¢ ©f Iengthj — i + 1 starting at position.
aware of any work related to this problem in the context of
a relational DBMS. Definition 2.1 [Edit Distance] Theedit distancdetween
In this paper, we present a technique for computing aptwo st_rings is th_e minimum nl_meer of e(_jit operations (i.e.,
proximate string joins efﬁcienﬂy_ At the core, our tech- insertions deletlonsandsu_bstltut_lon‘_,sof smgle characters
nique relies on matching short Substrings of |engdf the needed to transform the first string into the secand.
database strings (also known @ggramg. We show how
a relational schema can be augmented to directly represept2 ()-grams: A Foundation for Approximate String
g-grams of database strings in auxiliary tables within the Processing
database in a way that will enable use of traditional rela- ) , , .
tional techniques and access methods for the calculation ¢#€/ow, we briefly review the notion of positiongigrams
approximate string joins. By taking into account the to- from the Ilterat_ure, and_ we give t_he intuition behind their
tal number of such matches and the positions of individ-use for approximate string matching [16, 15, 13].
ual g-gram matches we guarantee no false dismissals under Given a strings, its positionalg-gramsare obtained by
the edit distance metric, as well as variations of it, and thesliding” a window of lengthg over the characters of.
identification of a set of candidate pairs with a few false Sinceg-grams at the beginning and the end of the string
positives that can be later verified for correctness. can have fewer thapcharacters fronr, we introduce new
Instead of trying to invent completely new join algo- characters#” and ‘$” notin X, and conceptually extgnd
rithms from scratch (which would be unlikely to be incor- the stringo by prefixing it withg — 1 occurrences of#
porated into existing commercial DBMSs), we opted for@nd suffixing it withg — 1 occurrences of$”. Thus, each
a design that would require minimal changes to existingg-9ram contains exactly characters, though some of these
database systems. We show how the approximate stringdy not be from the alphabkt
match predicate, with a suitable edit distance threshold, can
be mapped into a vanilla SQL expression and optimizedDefinition 2.2 [Positionalg-gram] A positionalg-gram
by conventional optimizers. The immediate practical ben-of a stringo is a pair(i, ofi...i4q—1]), whereo[i...i+
efit of our technique is that approximate string processing; — 1] is theg-gram ofo that starts at positiof) counting on
can be widely and effectively deployed in commercial re-the extended string. The st of all positionalg-grams of
lational databases without extensive changes to the unde-stringo is the set of all thés| + ¢ — 1 pairs constructed
lying database system. Furthermore, by not requiring anjrom all g-grams ofo. O
changes in the DBMS internals, we can re-use existing fa-
cilities, like the query optimizer, join ordering algorithms  The intuition behind the use gfgrams as a foundation
and selectivity estimation. for approximate string processing is that when two strings
The rest of the paper is organized as follows: In Seco; and o, are within a small edit distance of each other,
tion 2 we give the notation and the definitions that we will they share a large number @fgrams in common [15, 13].
use. Then, in Section 3 we introduce formally the prob-The following example illustrates this observation.



Example 2.1 [Positional g-gram] The positional ¢- 3.1 Exploiting User-Defined Functions

?(rilrzzj) of En#%g; q:3(3f?c:h)str|n?4jgrr]1r|]’1) ’Sr?ét?m a)re Our problem can be expressed easily in any object-

. : : relational database system that supports UDFs, such as Or-
g?inthg)) ’ (7’(1*25 r;l%$§8,s}m|) Siﬁfi?&imylt) the (pl(?s:ggn an-, acle or DB2. One could register with the database a ternary

- P ' : UDF edit _distance(sl, s2, k) that returns true
igsra;twsar?f ;3ngjr?gt_:n égr (;Smfrltr\)\?o]of?cr)lriﬁ%ﬁsmsl;mith Wh::rg if its two string arguments1, s2 are within edit distance of

: : . the integer argumerit. Then, the approximate string join
gélr’]##g) &7(2’#3,710)) (33(2’]023 (é(4’%?:)) (’1(05;;;&) ) problem for edit distanck could be represented in SQL as:
(11,mit)y , (12,ith) , (13,th$) , (14,h$$) }. If Q1:
we ignore the position information, the twpgram sets SELECT Ry.A;, Ry A,

have 11g-grams in common. Interestingly, only the first  From Ry, R,

five positionalg-grams of the first string are also positional  \wHERE edit_distance(  R;.A;, Ry.A;, k)
g-grams of the second string. However, an additional six

positionalg-grams in the two strings differ in their posi- To evaluate this query, relational engines would essen-

tion by just two positions. This illustrates that, in general, tially have to compute the cross-product of tabigsand

the use of positionaj-grams for approximate string pro- R,, and apply the UDF comparison as a post-processing

cessing will involve comparing positions of “matching®  filter. However, the cross-products of large tables are huge

grams within a certain “band and the UDF invocation, which is an expensive predicate,
on every record in the cross-product makes the cost of the

nJoin operation prohibitive. For these reasons, we seek a

In the next section we describe how we exploit the co ) .
better solution and we describe our approach next.

cept ofg-grams to devise effective algorithms for approxi-

Qﬁa%sr;rg][gglenssézigﬁggj Z%é?lgé individual approximate 3.2 Augmenting a Database with Positionag-Grams

To enable approximate string processing in a database sys-

. . . tem through the use gfgrams, we need a principled mech-

3 Approximate String Joins anism for augmenting the database with positigrgiams

rresponding to the original database strings.

Let R be a table with schem@d,, 44, ..., A;,), such

at Ay is the key attribute that uniquely identifies records

in R, and some attributed;, 7 > 0, are string-valued.

For each string attributel; that we wish to consider for

approximate string processing, we create an auxiliary ta-

Problem 1 (Approximate String Joins) Given tablesR; ble RA;Q(Ao, Pos, Qgram) with three attributes. For a

and R, with string attributesR;.A4; and R».A;, and an  stringo in attributeA; of a record ofR, its || + ¢ — 1 po-

integer k, retrieve all pairs of recordst,t’) € R; X Rs sitional g-grams are represented as separate records in the

such that editistanceR;.A4;(t), R2.A;(t')) < k. table RA;Q, where RA;Q.Pos identifies the position of
theg-gram contained iR A;Q.Qgram. Thesdo| +q— 1

Our techniques for approximate string processing inrecords all share the same value for the attritRitg Q. Ay,

databases share a principle common in multimedia and spé{‘fh'sﬁgngrt\;]eesa?jxmgrfo_re:g&k;%fgg'gféeu?eﬁfle durin
tial algorithms. First, a set of candidate answers is obtainegn Y9 y 9

using a cheap, approximate algorithm that guarantees e approximate join operation, they can be created on-the-
false dismissalsWe achieve this by performing a join on fly, when the database wants to execute such an operation,

) : L . _and deleted upon completion. In the experimental evalua-
theg-grams along with some additional filters that are guar ion (Section 4) we will show that the time overhead is neg-

anteed not to eliminate any real approximate match. The gible compared to the cost of the actual join. The space

as a second step, we use an expensive, in-memory al - . .
rithm to check tk?e edit distance Fl;etween each can%idgtgverhead for the auxiliary-gram table for a string field;

string pair and we eliminate athlse positives Gf a relationi? with n records is:
In the rest of this section we describe in detail the al-

gorithms used, and how they can be mapped into vanillag<

SQL expressions. More specifically, the rest of the sec-

tion is organized as follows. In Section 3.1 we describeVhereC is the size of the additional fields in the auxil-

the naive solution, which involves the direct application of 12Ty ¢-gram table (i.e.id andpos). Sincen(q — 1) <

user-defined functions (UDFs) to address the problem. IR—j=1 [1-4i(;)], for any reasonable value of it follows
Section 3.2 we describe how to augment a database witthat S(RA;Q) < 2(q + C) 3°7_, |R.Ai(t;)|. Thus, the
g-gram information that is needed to run the approximatesize of the auxiliary table is bounded by some linear func-
string joins. Finally, in Section 3.3 we describe a set of fil- tion of ¢ times the size of the corresponding column in the
ters that we use to ensure a small set of candidates and vegiginal table.

describe how to map these filters into SQL queries that can After creating an augmented database with the auxiliary

be subsequently optimized by regular query optimizers. tables for each of the string attributes of interest, we can

In the context of a relational database, we wish to studfO
techniques and algorithms enabling efficient calculation th
approximate string joins. More formally, we wish to ad-
dress the following problem:

RA;Q)=n(qg—1)(g+C) + (q+C) 37_, |R.Ai(t;)]



efficiently calculate approximate string joins using simple| SELECT R,.Ap, Rs.Ao, Ri.A;, Ra.A;

SQL queries. We describe the methods next. FROM Ri, R1A:Q, Ra, R2A;Q
WHERE  R;.Ag = R1A4;Q.A9 AND
3.3 Filtering Results Usingg-gram Properties R2.Ag = R2A;Q.Ag AND
. . . . R1A;Q.Qgram = R2A;Q.Qgram AND
In th!s section, we present our basic techmques fqr prot |R1A;Q.Pos — Ry A;Q.Pos| < k AND
cessing approximate string joins based on the edit distance |strien(R1.A;) — strien(Ra.A;)| < k

metric. The key objective here is to efficiently identify can-| gGroup BYR;.Aq, Ry. Ao, R1.A;, Ro.A;

didate answers to our problems by taking advantage of thepaving  COUNT()> strien(Ri.A;) — 1 — (k— 1) x ¢ AND

g-grams in the auxiliary database tables and using features COUNT(*) > strlen(Rz.A;) — 1 — (k — 1)+ q AND

already available in database systems such as traditional ac- edit _distance( Ri.A;, Ro.Aj, k)

cess and join methods.
For reasons of correctness and efficiency, we requore Figure 1: Query Q2: ExpressifGOUNT FILTERING, Po-

false dismissal&nd few false positivesespectively. To SITION FILTERING, andLENGTH FILTERING as an SQL

achieve these objectives our technique takes advantage expression.

three key properties af-grams, and uses the three filtering

techniques described below. o9 If 71 = 79 and(i, 7y ), after the sequence of edit opera-
tions that converd; to o9, “becomes’g-gram(j, 72) in the
Count Filtering: edited string.

The basic idea 0€EOUNT FILTERING s to take advantage Example 3.1 [Corresponding g-grams] Consider the
of the information conveyed by the sets, andGo,, of  stringso; = abaxabaaba ando, = abaabaaba. The
q-grams of the strings, anda, ignoring positional infor-  egit distance between these strings is 1 (detete trans-
mation in determining whether, ando, are within edit  form the first string to the second). ThéR, aba) in oy
distancek. The intuition here is that strings that are within corresponds t¢6, aba) in o5 but not to(9, aba). O

a small edit distance of each other share a large number of

g-grams in common. ) ) ] Notwithstanding the complexity of matching positional
This intuition has appeared in the literature earlier [14], ,-grams in the presence of edit errors in strings, a useful fil-

and can be formalized as follows. Consider a steingand  ter can be devised based on the following observation [13].

let o2 be obtained by a substitution of a single character in

o1. Then, the sets a-gramsG,, andG,, differbyatmost  proposition 3.2 If stringso; ando, are within an edit dis-

¢ (the length of the;-gram). This is becauspgrams that  tance ofk, then a positional-gram in one cannot corre-

do not overlap with the substituted character must be comgpond to a positionaj-gram in the other that differs from
mon to the two sets, and there are oply-grams that can it hy more thark positions.O

overlap with the substituted character. A similar observa-
tion holds true for single character insertions and deletionq._ength Filtering:
In other words, in these cases, ando, must have at least
(max(|oy],|o2])+¢—1)—q = max(|o1],|o2|)—1 g-grams ~ We finally observe that string length provides useful infor-
in common. When the edit distance betwegnando, is  mation to quickly prune strings that are not within the de-
k, the following lower bound on the number of matching sired edit distance.
g-grams holds.

Proposition 3.3 If two stringso; and o, are within edit
Proposition 3.1 Consider stringss; and o2, of lengths  distancek, their lengths cannot differ by more than O
|o1] and |o2|, respectively. It and oy are within an edit
distance of, then the cardinality of,, N G, ignoring  SQL Expression and Evaluation:

positional information, must be at leastax(|o1|, |o2|) — . . . L
1—(k—1)%q.O What is particularly interesting is th&@OUNT FILTER-

ING, POSITION FILTERING, andLENGTH FILTERING can

be naturally expressed as an SQL expression on the aug-
mented database described in Section 3.2, and efficiently
While COUNT FILTERING is effective in improving the ef- implemented by a commercial relational query engine. The
ficiency of approximate string processing, it does not takeSQL expressio®2, shown in Figure 1, modifies quefyl
advantage of-gram position information. in Section 3.1 to return the desired answers.

In general, the interaction betwegrgram match posi- Consequently, if a relational engine receives a request
tions and the edit distance threshold is quite complex. Anyfor an approximate string join, it can directly map it to a
giveng-gram in one string may not occur at all in the other conventional SQL expression and optimize it as usual. (Of
string, and positions of successiygrams may be off due course,k andq are constants that need to be instantiated
to insertions and deletions. Furthermore, as always, weefore the query is evaluated.)
must keep in mind the possibility of@gram in one string Essentially, the above SQL query expression joins the
occurring at multiple positions in the other string. auxiliary tables corresponding to the string-valued at-

We define a positional-gram(i, 1) in one strings; to tributesRk;.4; andR,.A; on theirQgramattributes, along
correspondo a positionalj-gram (j, 72) in another string  with the foreign-key/primary-key joins with the original

Position Filtering:



database tableB; and R, to retrieve the string pairs that 4.1 Data Sets
need to be returned to the user.

The POSITION FILTERING is implemented as a condi-
tion to theWHERElause of the SQL expression above. The
WHERElause will prune out any pair of strings Ry x Rs
that share many-grams in common but that are such that
the positions of the identical-grams differ substantially.

Hence, such pairs of strings will be eliminated from con- ; X
sideration before th€OUNT(*) conditions in theHAV- has approximately 40K tuples, each with an average length

ING clause are tested. Furthermore, this filter reduces th@f 14 characters.  The distribution of the string lengths
size of theg-gram join, hence it makes the computation of N Setlis depicted in Figure 2(a): the lengths are mostly
the query faster, since fewer pairs @frams have to be around the mean value, with small deviatioSet2was
examined by th&ROUP B¥nd theHAVINGclause. The constructed by concatenating three string attributes from
simplicity of this check when coupled with the ability of the customer databaseSet2has approximately 30K tu-

relational engines to use techniques like band-join proces?—!esz ea_ch Wf'”;] an a}verfalge Iﬁngth O.f 38 qharaqters. The
ing [6] makes this a worthwhile filter. distribution of the string lengths iset2is depicted in Fig-

The LENGTH FILTERING is implemented as an addi- ure 2(b): the lengths follow a close-to-Gaussian distribu-
tional condition to theVHERElause of the SQL expres- tion, with an additional peak around 65 characters. Finally,
sion above, which compares the lengths of the two string et3was constructed by concatenating two string attributes
Again, like thePOSITION FILTERING technique, this filter oM the customer databas8et3has approximately 30K
reduces the size of thegram join, and subsequently the tUPIes, €ach with an average length of 33 characters. The
size of the candidate set. distribution of the string I.eng'ths iset3is deplc_ted in Fig-

Finally the COUNT FILTERING is implemented mainly ure 2(c): the length distribution is almost uniform up to a

by the conditions in thélAVINGclause. The string pairs maximum string length of 67 characters.
that share only a few-grams (and not significantly many)

will be eliminated by theCOUNT(*) conditions in the 4.2 DBMS Implementation
HAVINGclause. Any string pairs ifi®; x R that do not
share anyy-grams are eliminated by the conditions in the
WHERElause.

However, even after the filtering steps the candidat
set may still have false positives. Hence, the expensi
UDF invocation edit _distance( R;.A4;, R2.A;j k)
still needs to be performed, but hopefully on just a small
fraction of all possible string pairs.

We have included all the three filtering mechanisms in
Q2 Of course any one of these filtering mechanisms ma
be left out of quenyQ2, and resulting queries will still per-
form our task albeit perhaps less efficiently. In Section 4
we quantify the benefits of each of the filtering mechanism
individually.

In Section 4, we quantify this performance difference

All data sets used in our experiments are real, with string
attributes extracted by sampling from the AT&T WorldNet
customer relation database. We have used three different
data setsetl, set2andset3for our experiments with dif-
ferent distributional characteristics.

Setlconsists of the first and last names of peoj3etl

The first experiment we performed was to compare our ap-
proach with a straightforward SQL formulation of the prob-
lem with a function to compute the edit distance of two
VeSIrings as a UDF, and performing a join query by essen-

?lally using the UDF invocation as the join predicate. This
is a baseline comparison to establish the benefits of our ap-
proach. We implemented the function to assess the edit
distance of two strings as a UBBNd we registered it in a
commercial DBMS (Oracle 8i) running on a SUN 20 En-
¥erprise Server.

We started by issuing th@1 query (see Section 3.1) to
the DBMS, to evaluate a self-join getl As expected,
fhe DBMS chose a nested loop join algorithm to evaluate
the join. We tried to measure the execution times over this

. . ata set, but unfortunately the estimated time to finish the
using commercial database systems and real data Sets. By, osqing was extremely high (more than 3 days). There-
examining the query evaluation plans generated by comg

mercial database systems, under varying availability of aco.: to compare our approach with the direct use of UDFs
Y ' ying ity we decided to compare the methods for a random subset of
cess methods, we observed that relational engines mal

good use of traditional access methods and join metho Petlconsstmg of 1,000 strings. Hence, we issued@ie

: L . ; §elf-join query to determine string pairs in the small data
in efficiently evaluating the above SQL expression. set within edit distance df. Moreover, to assess the utility

] ) of the proposed filters when applied as UDF functions, we
4 Experimental Evaluation registered an additional UDF that first applies the filtering
chniques we proposed pairs of stringssupplied in the
put, and if the string pair passes the filter, then determines
the strings are within distancke. Each of these queries
ook about 30 minutes to complete for this small data set.
\pplying filtering and edit distance computatiwofithin the

comparison analyzing various trends in the approximat
string processing operations. We start in Section 4.1 b
describing the data sets that we used in our experiment
Then, in Section 4.2 we discuss the baseline experimen

: . DF requires slightly longer time compared@d. Finally,
that we conducted using a commercial DBMS to compare. ~. s :
our approach for approximate string joins against an im‘i:'ve issued querd2, which implements our technique (Sec-

gon 3.3). The execution times in this case are in the order of
ne minute. The execution time increases as edit distance

In this section we present the results of an experiment;

plementation that uses SQL extensions in a straightforwar
way. Finally, in Section 4.3 we report additional experi-

mental results for our technique using a prototype relational 2y implemented the(nk) decision algorithm to decide whether
system we developed. two strings match or not within ediistancek.
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Figure 2: Distribution of String Lengths for the (sgtl, (b) set2 and (c)set3Data Sets.
10000 — time and I/O time. The processor time includes the time to
[BQL (UDF only) BQ2 (Fifering)| validate the distance between candidate pairs, and the /O
8y time includes the time for querying the auxiliary tables.
§§ 100 The results below do not include the time to generate
€E and index the auxiliary tables. For all the data sets the time
1 k=1 k=2 k=3 spent to generate the auxiliary tables was less than 100 sec-
(B (UDF only) 1954 2028 2044 onds and the time to create a B-tree index on them, using
l992 Fiteing = = = bulk loading, was less than 200 seconds. Hence, it seems

feasible to generate these tables on the fly before an ap-
Figure 3: Executing Querie®1 and Q2 over the Sample Proximate string join. _ _
Database. We now analyze the performance of approximate string
join algorithms under various parameters of interest.
increases, since more strings are expected to be within the
specified edit distance, and we have to verify more stringeffect of Filters
airs. The results are reported in Figure 3. It is eviden oo
b b g tln the worst case (like in quer@®1), the cross product of

that using our relational technique offers very large perfor-

mance benefits, being more than 20 times faster than th@e relations has to be tested for edit distance. The aim of

straightforward UDF implementation. introducing filters was to reduce the number of candidate
Using queryQ2 we also experimented with various pairs tested. The perfect filter would eliminate all the false

physical database organizations for the commercial DBMEOSItVES, giving the exact answer that would need no fur-
and observed the plans generated. When there were no i 1er verification. To examine how effective each filter and

dexes available on thegram tables, the joins are executed €ach combination of filters is, we ran different queries, en-
using hash-join algorithms and the group-by clause is exabling different filters each time, and measured the size of

ecuted using hashing. When there is an index on one e candidate set. Then, we compared its size against that
on bothg-gram tables joins use sort-merge-join aIgorithmsOf the cross product and against the size of the real answer

and the group-by clause is executed using hashing. Wlt\rllvgogsésrﬁiregglt;i\gf the effectiveness DENGTH FIL-

: : : TERING for the three data sets. As expectedNGTH FIL-
43 Aplzg(r)ir[;lnrﬁgce of Approximate String Processing TERING was not so effective foget], which has a limited
spread of string lengths (Figure 2(a)l.ENGTH FILTER-
Based on the intuition obtained using the commerciallNG gave a candidate set that was between 40% to 70% of
DBMS, we developed a home-grown relational system prothe cross-product size (depending on the edit distance). On
totype to conduct further experiments in a more controlledthe other handLENGTH FILTERING was quite effective
and flexible fashion, disassociating ourselves and our obfor set2and set3 which have strings of broadly variable
servations from component interactions between DBMSengths (Figure 2(b) and (c)). The candidate set size was
modules. between 1.5% to 10% of the cross-product size. The de-
We emphasize that our objective is to observe perfortailed results are shown in Figure 4.
mance trends under the parameters that are associated withEnabling COUNT FILTERING in conjunction with
our problem (i.e.g-gram size, number of errors allowed). LENGTH FILTERING causes a dramatic reduction on the
These experiments are not meant to evaluate the relativeumber of candidate pairs: on average (over the various
performance of the join algorithms. Choosing which algo-combinations ok andq tested) the reduction is more than
rithm to use in each case is the task of the query optimize®9% for all three data sets. On the other hand, enabling

and modern optimizers are effective for this task. POSITION FILTERING with LENGTH FILTERING reduces

We conducted experiments using our prototype and théhe number of candidate pairs, but the difference is not so
data sets of Section 4.1. In our prototypeENGTH FIL-  dramatic. On average it shrinks the size of the candidate
TERING andPOSITION FILTERING are applied before cre- set by 50%. Finally, enabling all the filters together worked
ating the join on the-gram relations. TherCOUNT FIL- best, as expected, with only 50% as many candidate pairs as

TERING takes place using hashing on the output of the jointhose withouPosITION FILTERING, confirming our previ-
operations betweegtgram relations. We used two perfor- ous measurement that position filtering reduces the candi-
mance metrics: the size of the candidate set and the totalate set by a factor of two. The comparative results for the
running time of the algorithm decomposed into processothree data sets are depicted in Figure 4.
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better results, resulting in join sizes that are up to two or-
ders of magnitude smaller than that from the equijoin. In
eFigure 6 we illustrate the effectiveness of the filtersdetl
and set2(the results forset3were similar to the ones for
set). These results validate our intuition thaOSITION
FILTERING is a useful filter, especially in terms of time ef-
ficiency.

Our experiments indicate that a small value éénds to
give better results. We observe that valueg gfeater than
three give consistently worse results compared to small
values. This is due to the threshold fBOUNT FILTER-
ING, which gets less tight for highes's. Furthermore,
the value ofg=1 gives worse results thajr2, because the
valueg=1 does not allow fog-gram overlap. When=2 or
¢=3, the results are inconclusive. However, since a higher .
value ofq results in increased space overhead (Section 3.2)5ffect of Different Query Plans

g=2 seems preferable. The increased efficiencyfer 2 \ye first report the trends for algorithms that do not make
conflrrr_ls approximate theoreUpaI estimations in [10] a_boutuse of indexes on the-gram relations, and then show the
the optimal value of for approximate string matching with o5 for the algorithms that use indexes on ghgram
very long strings{ = log s (m), wherem is the length of o |ations to perform the join operations. We describe our
the string). In Figure 5 we plot the results for2 andk=3.  gpservations in the sequel. Due to space constraints, we
Finally, we examined the effect @fENGTH FILTERING present only results for self-joins usisgtl The perfor-
and PosITION FILTERING on the size of the-gram join  mance trends are similar for the other data sets and for joins
(i.e., the number of tuples in the join of thegram ta- that are not self-joins.
blesbeforethe application of th&sSROUP BY, HAVING No Index Available: In the absence of indexes on re-
clause). The effectiveness of these filters plays an imponations RA;Q, the applicable algorithms are Nested Loops
tant role in the execution time of the algorithm. If the filters (NL), Hash Join (HJ), and Sort-Merge Join (SM). We omit
are effective, the-gram join is small and the calculation NL from the plots, as this algorithm takes approximately
of COUNT FILTERING is faster, because tteROUP BY, 14 hours to complete for edit distankel. Figures 7(a)(b)
HAVINGclauses have to examine fewegram pairs. Our  show the results as the edit distance threshold is increased
measurements show thRENGTH FILTERING decreases for ¢-gram size of 3 (Figure 7(a)). We observe that as
the size of thej-gram join by a factor of 2 to 12 compared the distance threshold is increased, the overall execution
to the naive equijoin on the-gram attribute (the decrease time increases both in processor and I/O time. The trends
was higher foset2andset3d. FurthermorePosITION FIL- match our expectations: I/O time increases as the number
TERING, combined withLENGTH FILTERING, gives even of candidate pairs increases, because more pairs are hashed



during the hash-based counting phase, for both algorithms?; x R, such that for some substring of Ry.A;(t'),

Processor time increases since the candidate set has ma@it distanceR;.4;(t), o) < k.

string pairs, thus more strings have to be testedk Asdg

increase, the overall time increases (Figure 7(b)). Both al- In order to use our approach, we reexamine what filter-

gorithms become heavily processor boundieB, ¢=5 as  ing techniques can be applied for this problem. For a string

COUNT FILTERING becomes less effective and large num- ¢, to be within edit distancé of a substringrs of o9, it

bers of false positive candidates are generated that subsewst be the case that andos (and hencer;y) must have

quently have to be verified. a certain minimum number of matchinggrams. Addi-
Indexes Available: We differentiate between two cases: tionally, the positions of these matches must be in the right

(a) one of the two relations joined is indexed, and (b) bothorder and cannot be too far apart.

relations have B-tree indexes on them. In the first case, we Clearly, LENGTH FILTERING is not applicable in this

present results for Indexed Nested Loops (INL) and SMcase. However, it follows from the first observation above

When both relations have indexes on them, SM is testedhat COUNT FILTERING is still applicable. Proposition 3.1

When there is only one index, then SM performs muchneeds to be replaced by the following (weaker) proposition:

better than INL. Figures 7(c)(d) present the results for this

case. INL performs multiple index probes and incurs a highProposition 5.1 Consider stringsr; ando,. If 05 has a

I/0 time. The performance trends are consistent with thosgubstrings; such thatr; andos are within an edit distance

observed above for the no index case, both for varying of k, then the cardinality o7, N G, ignoring positional

gram size and for varying the edit distance threshold. Wheinformation, must be at leagt;| — (k + 1)g + 1. O

the size of the;-gram relations involved varies (e.g., when

one relation consists only of a few strings), the trends are The applicability ofPOSITION FILTERING is complex.

the same both for increasing thegram size as well as for While it is true from the second observation above that the

increasing:. In this case, however, INL performs fewer in- positions of theg-gram matches cannot be too far apart,

dex probes and might be chosen by the optimizer. In practhe g-gram at position in o; may match at any arbitrary

tice, the DBMS picks INL as the algorithm of choice only position inos and not just ini = k. Hence,POSITION

when one of the-gram relations is very small compared FILTERING is not directly applicable for approximate sub-

to the other. For all the other cases, SM was the algorithngtring matching.

of choice and this is also confirmed by our measurements The SQL query expression for computing an approxi-

with the prototype implementation. mate substring join betwed®, andR; incorporating “sub-
Figures 7(e)(f) present the results for the case when instring style” can be easily devised from quepp, if we

dexes are available on both relations for increasing numbeemove the clauses that perform the position and length fil-

of errors and twg-gram sizes (Figure 7(e)) and increasing tering and we replace thedit distanceUDF with the ap-

g-gram size for two values ot (Figure 7(f)). The per- propriate one.

formance trends are consistent with those observed so far, The standard algorithm for determining all approximate

both for varyingg-gram size and for varying the edit dis- occurrences of a string, in o is rather expensive, taking

tance threshold. time O(n?) in the worst case. Here we develop an alterna-
tive filtering algorithm, calledSubstring Position Filtering
5 Extensions (SPF), that is based agagrams and their relative positions,

and quickly (in quadratic time) provides a check whether
one strings, is an approximate substring of another string
oo. We will briefly describe the SPF algorithm here; for
given stringss; ando,, SPF certifiegr, to be a candidate
for approximate match of; as an approximate substring
in one or more places within threshadtd As before, this is
a filter with no false dismissals.
The kinds of string matches that are of interest are often SPF works by finding any one place wherg poten-
based on one string being a substring of another, posstially occurs ino», if any. Let~; be thei!" g-gram in
bly allowing for some errors. For example, an attributestringoy, 1 < i < imax = |01 + ¢ — 1. Letpos(v;, 02)
CityState  of one table may contain city and state in- be the set of positions ia, at which g-gram~; occurs;
formation for every city in the United States, while anotherthis set may be empty. The algorithm, shown in Figure 8,
attributeCustAddress  (of a different table) may contain may be thought of as using standard dynamic programming
addresses of customers. One might be interested in corréer edit-distance computation, but savings are achieved by
lating information in the two tables based on values in the(i) applying the algorithm sparsely only at a subset of po-
CityState  attribute being substrings of tHeustAd- sitions ino, guided by the occurrences of certgigrams
dress attribute, allowing for errors based on an edit dis- (line 3 of SPF), and (ii) applying only part of the dynamic
tance threshold. The formal statement of the approximat@rogramming, again guided by certajrgrams (line 5 of
substring join problem is: SPF). Algorithm SubMatch is the dynamic programming
part, which is described here in a top-down recursive way
Problem 2 (Approximate Substring Join) Given tables where the table SubMatchArray is filled in as it is com-
R; and R, with string attributes R;.A4; and R».A;, puted and read as needed (this is needed since which en-
and an integerk, retrieve all pairs of recordg¢,t') € tries of the SubMatchArray will be computed depends on

We now illustrate the utility of our techniques for two ex-
tensions of our basic problems: (i) approximateéstring
joins, and (ii) approximate string joins when we allbleck
movedo be an inexpensive operation on strings.

5.1 Approximate Substring Joins
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Figure 7: Response Time (in seconds) for Various Physical Database Organizations.

Algorithm SPFg1,02.k) {
missing = 0;
for(i =1;4 < imax; i + +)
for j € pos(v;,02)
cost = SubMatchfz, j + 1,7 + 1);
if ((missing+ cost)< k * q)
return{oz2};
missing++;
return®;

SubMatché, j, ¢) {
if (¢ > imax) return 0;
if SubMatchArrayy, i] already computed, return it.
if (j € pos(vi,0))
return SubMatch{, j + 1,7 + 1);
insertioncost = 1+ SubMatch§, j + 1,14);
deletioncost = 1+ SubMatchg, 7,1 + 1);
substitutioncost = 1+ SubMatch§, 7 + 1,7 + 1);
SubMatchArrayj, i] = min{insertioncost,
deletioncost, substitutiorcost
return SubMatchArraly, i];

}

Figure 8: Substring Position Filtering (SPF) Algorithm. Theorem 5.1 Let (&

move operations as well. A natural example is in match-
ing names of people; we would like to be able to match
“first-name last-name” with “last-name, first-name” using
an error metric that is independent of the length of first-
name or last-name. It turns out that tiigram method is
well suited for this enhanced metric. For this purpose, we
begin by extending the definition of edit distance.

Definition 5.1 [Extended Edit Distance] The extended
edit distancebetween two strings is the minimum cost of
edit operations needed to transform the first string into the
second. The operations allowed are single-character inser-
tion, deletion, and substitution at unit cost, and the move-
ment of a block of contiguous characters at a cogt aifits.

O

The extended edit distance between two stringand
o9 is symmetric and < extendededit distancéo;, o) <
maz(|oi|, |o2]).

-, andG,, be the sets af-grams (of
lengthgq) for stringso; ando, in the database. i, andos

relative occurrences @fgrams, and cannot be ascertained

SIS are within an extended edit distancekgthen the cardinal-
a priori).

ity of G, NG, , ignoring positional information, is at least
max(|o1],|o2]) —1-3(k—1)q/0', whered’ = min(3, 3).
52 Allowing for Block Moves Intuitively, the bound arises from the fact that the block
Traditional string edit distance computations are for sin-move operation can transform a string of the fommo .
gle character insertions, deletions, and substitutions. Howto advu, which can result in up t8¢ — 3 mismatching
ever, in many applications we would like to allow block g-grams.



Based on the above observations, it is easy to see thaksed information systems. The main contribution of this

one can applyCOUNT FILTERING (with a suitably modi-
fied threshold) and.ENGTH FILTERING for approximate

paper is an effective technique for supporting approximate
string processingn top of a database systery using

string processing with block moves. However, incorporat-the unmodifiedcapabilities of the underlying system. We
ing PosITION FILTERING is difficult as described earlier showed that significant performance benefits are to be had

because block moves may end up movipgrams arbi-
trarily. Nevertheless, we can design an enhanced filtering

by using our techniques.

mechanism (just as we did with the SPF algorithm in theACknOWIedgmentS

previous section) and incorporate it together with count fil-

tering into a SQL query as before. Due to space limitationk- Gravano and P. Ipeirotis were funded in part by the Na-

we do not list the details.

tional Science Foundation (NSF) under Grants No. [IS-97-

33880 and 11S-98-17434. P. Ipeirotis is also partially sup-

6 Related Work

ported by Empeirikeio Foundation. The work of H.V. Ja-
gadish was funded in part by NSF under Grant No. IIS-

A large body of work has been devoted to the developmen90085945-

of efficient solutions to the approximate string matching
problem. For two strings of length andm, available in
main memory, there exists a folklore dynamic program- [y
ming algorithm to compute the edit distance of the strings

in O(nm) time and space [12]. Improvements to the ba-
sic algorithm have appeared, offering better average an 2]
worst case running times as well as graceful space behav-
ior. Due to space limitations, we do not include a detailed
survey here, but we refer the reader to [10] for an excellent[3]
overview of the work as well as additional references.

Identifying strings approximately in secondary storage 4]
is a relatively new area. Indexes such as Glimpse [9] store a
dictionary and use a main memory algorithm to obtain a set
of words to retrieve. Exact text searching is applied there- [5]
after. These approaches are rather limited in scope due to
the static nature of the dictionary, and they are not suitable
for dynamic environments or when the domain of possible [g]
strings is unbounded. Other approaches rely on suffix trees
to guide the search for approximate string matches [4, 11].
In [1], Baeza-Yates and Gonnet solve the problem of exact;,,
substring joins, using suffix arrays and outside the context
of a relational database.

In the context of databases, several indexing techniques
proposed for arbitrary metric spaces [3, 2] could be applied[8]
for the problem of approximately retrieving strings. How-
ever such structures have to be supported by the database
management system. (9]

Cohen [5] presented a framework for the integration of
heterogeneous databases based on textual similarity a I
proposed WHIRL, a logic that reasons explicitly about
string similarity using TF-IDF term weighting, from the [11]
vector-space retrieval model, rather than the notions of edit
distance on which we focus in this paper.

Grossman et al. [7, 8] presented techniques for reprep o)
senting text documents and their associated term frequen-
cies in relational tables, as well as for mapping boolean
and vector-space queries into standard SQL queries. In thig3]
paper, we follow the same general approach of translating
complex functionality not natively supported by a DBMS [14]
(approximate string queries in our case) into operations and

queries that a DBMS can optimize and execute efficiently. [1s]

7 Conclusions
[16]

String processing in databases is a very fertile and useful
area of research, especially given the proliferation of web
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