
QProber: A System for Automatic
Classification of Hidden-Web Databases

LUIS GRAVANO and PANAGIOTIS G. IPEIROTIS
Columbia University
and
MEHRAN SAHAMI
Stanford University

The contents of many valuable Web-accessible databases are only available through search inter-
faces and are hence invisible to traditional Web “crawlers.” Recently, commercial Web sites have
started to manually organize Web-accessible databases into Yahoo!-like hierarchical classification
schemes. Here we introduce QProber, a modular system that automates this classification process
by using a small number of query probes, generated by document classifiers. QProber can use a
variety of types of classifiers to generate the probes. To classify a database, QProber does not re-
trieve or inspect any documents or pages from the database, but rather just exploits the number
of matches that each query probe generates at the database in question. We have conducted an
extensive experimental evaluation of QProber over collections of real documents, experimenting
with different types of document classifiers and retrieval models. We have also tested our system
with over one hundred Web-accessible databases. Our experiments show that our system has low
overhead and achieves high classification accuracy across a variety of databases.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: Abstracting
Methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—
clustering, information filtering, search process, selection process; H.3.4 [Systems and Software]:
Information Networks, Performance Evaluation (efficiency and effectiveness); H.3.5 [Information
Storage and Retrieval]: Online Information Services—web-based services; H.3.7 [Information
Storage and Retrieval]: Digital Libraries; H.2.4 [Database Management]: Systems—textual
databases, distributed databases; H.2.5 [Database Management]: Systems—heterogeneous
databases

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Database classification, Web databases, hidden Web

This material is based upon work supported by the National Science Foundation under Grants
No. IIS-97-33880 and IIS-98-17434. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation. P. G. Ipeirotis was partially supported by the Empeirikeio
Foundation.
Authors’ addresses: L. Gravano and P. G. Ipeirotis, Computer Science Department, Columbia
University, 1214 Amsterdam Ave., New York, NY 10027; email: {gravano;pirot}@cs.columbia.edu;
M. Sahami, Computer Science Department, Stanford University, Stanford, CA 94305; email:
sahami@cs.stanford.edu.
Permission to make digital/hard copy of all or part of this material is granted without fee for per-
sonal or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2003 ACM 1046-8188/03/0100-0001 $5.00

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003, Pages 1–41.

2 • L. Gravano et al.

1. INTRODUCTION

As the World-Wide Web continues to grow at an exponential rate, the problem
of accurate information retrieval in such an environment also continues to es-
calate. One especially important facet of this problem is the ability to not only
retrieve static documents that exist on the Web, but also effectively determine
which searchable databases are most likely to contain the relevant information
for which a user is looking. Indeed, a significant amount of information on the
Web cannot be accessed directly through links, but is available only as a re-
sponse to a dynamically issued query to the search interface of a database. The
results page for a query typically contains dynamically generated links to these
documents. Traditional search engines cannot index documents hidden behind
such interfaces and ignore the contents of these resources, since they only take
advantage of the link structure of the Web to “crawl” and index Web pages.

Even sites that have some links that are “crawlable” by a search engine may
have much more information available only through a query interface, as the
following real example illustrates.

Example 1.1. Consider the medical bibliographic database CANCERLITr

from the National Cancer Institute’s International Cancer Information Center,
which makes medical bibliographic information about cancer available through
the Web.1 If we query CANCERLIT for documents with the keywords lung AND
cancer, CANCERLIT returns 68,430 matches, corresponding to high-quality
citations of medical articles. The abstracts and citations are stored locally at
the CANCERLIT site and are not distributed over the Web. Unfortunately, the
high-quality contents of CANCERLIT are not “crawlable” by traditional search
engines. A query2 on AltaVista3 that finds the pages in the CANCERLIT site
with the keywords “lung” and “cancer” returns 0 matches, which illustrates
that the valuable content available through CANCERLIT is not indexable by
traditional crawlers.

In addition, some Web sites prevent crawling by restricting access via a
robots.txt file. Such sites then also become de facto noncrawlable.

In this article we concentrate on searchable Web databases of text documents
regardless of whether their contents are crawlable. More specifically, for our
purposes a searchable Web database is a collection of text documents that
is searchable through a Web-accessible search interface. The documents in a
searchable Web database do not necessarily reside on a single centralized site,
but can be scattered over several sites. Some searchable sites offer access to
other kinds of information (e.g., image databases and shopping/auction sites);
however, a discussion of the classification of these sites is beyond the scope of
this article.

In order to effectively guide users to the appropriate searchable Web
database, some Web sites (described in more detail below) have undertaken
the arduous task of manually classifying searchable Web databases into a

1The query interface is available at http://www.cancer.gov/search/cancerliterature/.
2The query is lung AND cancer AND host:www.cancer.gov.
3http://www.altavista.com.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 3

Yahoo!-like hierarchical categorization scheme. Although we believe this type
of categorization can be immensely helpful to Web users trying to find informa-
tion relevant to a given topic, it is hampered by the lack of scalability inherent
in manual classification. By providing an efficient automatic means for the
accurate classification of searchable text databases into topic hierarchies, we
hope to alleviate the scalability problems of manual database classification, and
make it easier for end-users to find the relevant information they are seeking on
the Web.

Consequently, in this article we describe our system, named QProber, which
automates the categorization of searchable Web databases into topic hierarchies.
QProber uses a combination of machine learning and database querying tech-
niques. We use machine learning techniques to initially build document classi-
fiers. Rather than actually using these classifiers to categorize individual doc-
uments, we extract classification rules from the document classifiers, and we
transform these rules into a set of query probes that can be sent to the search
interface of the available text databases. Our algorithm then simply uses the
number of matches reported for each query to make classification decisions,
without having to retrieve and analyze any of the actual database documents.
This makes our approach very efficient and scalable.

The contributions presented in this article are organized as follows. In
Section 2 we more formally define and provide various strategies for database
classification. In Section 3 we present the details of our query probing algo-
rithm for database classification and we describe a rule extraction algorithm
that can be used to extract query probes from a variety of both rule-based
and linear document classifiers. In Sections 4 and 5 we provide the exper-
imental setting and results, respectively. We compare variations of QProber
with existing methods for automatic database classification. QProber is shown
to be both more accurate as well as more efficient on the database classifica-
tion task. Also, we examine how different parameters affect the performance
of QProber; we report results for the different types of classifiers used as
well as results for different probing strategies and document retrieval mod-
els. Section 6 describes related work, and Section 7 provides further discussion
and outlines possible future research directions. Finally, Section 8 concludes the
article.

2. CLASSIFICATION OF TEXT DATABASES

In this section we discuss how we can organize the space of searchable Web
databases in a hierarchical categorization scheme. We first define appropri-
ate classification schemes for such databases in Section 2.1, and then present
alternative methods for text database categorization in Section 2.2.

2.1 Classification Schemes for Databases

Web directories like Yahoo! organize Web pages into categories for users to
browse. In this section we extend this classification scheme to searchable Web
databases and discuss classification alternatives.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

4 • L. Gravano et al.

Fig. 1. Portion of the InvisibleWeb classification scheme.

Several commercial Web directories have recently started to manually clas-
sify searchable Web databases, so that users can browse through these cate-
gories to find the databases of interest. Examples of such directories include
InvisibleWeb4 and SearchEngineGuide.5 Figure 1 shows a small fraction of
InvisibleWeb’s classification scheme.

Formally, we can define a hierarchical classification scheme like the one used
by InvisibleWeb as follows.

Definition 2.1. A hierarchical classification scheme is a rooted directed tree
whose nodes correspond to (topic) categories and whose edges denote special-
ization. An edge from category v to another category v′ indicates that v′ is a
subcategory of v.

Given a classification scheme, our goal is to automatically populate it with
searchable databases where we assign each database to the “best” category or
categories in the scheme. For example, InvisibleWeb has manually assigned
WNBA to the “Basketball” category in its classification scheme. In general we
can define what category or categories are “best” for a given database in several
different ways, according to the needs the classification will serve. We describe
these different approaches next.

2.2 Alternative Classification Strategies

We now turn to the central issue of how to automatically assign databases
to categories in a classification scheme, assuming complete knowledge of the
contents of these databases. Of course, in practice we will not have such com-
plete knowledge, so we will have to use the probing techniques of Section 3 to
approximate the “ideal” classification definitions that we give next.

To assign a searchable Web database to a category or set of categories in a
classification scheme, one possibility is to manually inspect the contents of the
database and make a decision based on the results of this inspection. Inciden-
tally, this is the way in which commercial Web directories such as InvisibleWeb

4http://www.invisibleweb.com.
5http://www.searchengineguide.com.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 5

operate. This approach might produce good quality category assignments but,
of course, is expensive (it includes human participation) and does not scale well
to the large number of searchable Web databases.

Alternatively, we could follow a less manual approach and determine the
category of a searchable Web database based on the category of the documents
it contains. We can formalize this approach as follows. Consider a Web database
D and n categories, C1, . . . , Cn. If we knew the category of each of the documents
inside D, then we could use this information to classify database D in at least
two different ways. A coverage-based classification will assign D to all categories
for which D has sufficiently many documents. In contrast, a specificity-based
classification will assign D to the categories that cover a significant fraction of
D’s holdings.

Example 2.2. Consider the topic category “Basketball.” CBS SportsLine
has a large number of articles about basketball and covers not only women’s
basketball but other basketball leagues as well. It also covers other sports such
as football, baseball, and hockey. On the other hand, WNBA only has articles
about women’s basketball. The way that we will classify these sites depends on
the use of our classification. Users who prefer to see only articles relevant to
basketball might prefer a specificity-based classification and would like to have
the site WNBA classified into node “Basketball.” However, these users would
not want to have CBS SportsLine in this node, since this site has a large number
of articles irrelevant to basketball. In contrast, other users might prefer to have
only databases with a broad and comprehensive coverage of basketball in the
“Basketball” node. Such users might prefer a coverage-based classification and
would like to find CBS SportsLine in the “Basketball” node, which has a large
number of articles about basketball, but not WNBA with only a small fraction
of the total number of basketball documents.

More formally, we can use the number of documents in each category that we
find in database D to define the following two metrics, which we use to specify
the “ideal” classification of D.

Definition 2.3. Consider a database D, a hierarchical classification scheme
C, and a category Ci ∈ C. The coverage of D for Ci, Coverage(D, Ci), is the
number of documents in D in category Ci:

Coverage(D, Ci) = number of D documents in category Ci.

Coverage(D, Ci) defines the “absolute” amount of information that database D
contains about category Ci.6

Definition 2.4. In the same setting as Definition 2.3, the specificity of D
for Ci, Specificity(D, Ci), is the fraction of documents in category Ci in D. More

6It would be possible to normalize Coverage values to be between 0 and 1 by dividing by the total number of
documents in category Ci across all databases. Coverage would then measure the fraction of the universally
available information about Ci that is stored in D. Alternatively, we could define Coverage in terms of an idf-
like measure to express the extent to which a database covers a topic that is rare overall. Although intuitively
appealing, such definitions would be “unstable” since each insertion, deletion, or modification of a Web database
would change the Coverage of the other available databases.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

6 • L. Gravano et al.

formally, we have:

Specificity(D, Ci) = Coverage(D, Ci)
|D| ,

where |D| is the size of the database.

Specificity(D, Ci) gives a measure of how “focused” the database D is on a
category Ci. The value of Specificity ranges between 0 and 1. For notational
convenience we define:

Coverage(D)=〈Coverage(D, Ci1), . . . , Coverage(D, Cim)〉
Specificity(D)=〈Specificity(D, Ci1), . . . , Specificity(D, Cim)〉

when the set of categories {Ci1 , . . . , Cim} is clear from the context.
Now we can use the Specificity and Coverage values to decide how to classify

D into one or more categories in the classification scheme. As described above,
a specificity-based classification would classify a database into a category when
a significant fraction of the documents it contains are of this specific category.
Alternatively, a coverage-based classification would classify a database into a
category when the database has a substantial number of documents in the given
category. In general, however, we are interested in balancing both Specificity
and Coverage through the introduction of two associated thresholds τs and τc,
respectively, as captured in the following definition.

Definition 2.5. Consider a classification scheme C with categories
C1, . . . , Cn, and a database D. The ideal classification of D in C is the set
Ideal(D) of categories Ci that satisfy the following conditions.

—Specificity(D, Ci) ≥ τs,
—Specificity(D, Cj) ≥ τs for all ancestors Cj of Ci,
—Coverage(D, Ci) ≥ τc,
—Coverage(D, Cj) ≥ τc for all ancestors Cj of Ci, and
—Coverage(D, Ck) < τc or Specificity(D, Ck) < τs for each of the children Ck

of Ci,

where 0 ≤ τs ≤ 1 and τc ≥ 1 are given thresholds.

The ideal classification definition given above provides alternative ap-
proaches for “populating” a hierarchical classification scheme with searchable
Web databases, depending on the values of the thresholds τs and τc. A low
value for the specificity threshold τs will result in a coverage-based classifica-
tion of the databases. Similarly, a low value for the coverage threshold τc will
result in a specificity-based classification of the databases. The values chosen
for τs and τc are ultimately determined by the intended use and audience of
the classification scheme.7 Next we introduce a technique for automatically

7The choice of thresholds might also depend on other factors. For example, consider a hypothetical
database with a “perfect” retrieval engine. Coverage might then be more important than specificity
for this database if users extract information from the database by searching. The retrieval engine
identifies exactly the on-topic documents for a query, making the presence of off-topic documents

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 7

populating a classification scheme according to the ideal classification of
choice.

3. CLASSIFYING DATABASES THROUGH PROBING

In the previous section we defined how to classify a database based on the num-
ber of documents that it contains in each category. Unfortunately, databases
typically do not export such category-frequency information. In this section we
describe how we can approximate this information for a given database with-
out accessing its contents. The whole procedure is divided into two parts: First
we train our system for a given classification scheme and then we probe each
database with queries to decide the categories to which it should be assigned.
More specifically, we follow the algorithm below.

(1) Train a document classifier with a set of preclassified documents
(Section 3.1).

(2) Extract a set of classification rules from the document classifier and trans-
form classifier rules into queries (Sections 3.2 and 3.3).

(3) Adaptively issue queries to databases, extracting and adjusting the num-
ber of matches for each query using the classifier’s “confusion matrix”
(Section 3.4).

(4) Classify databases using the adjusted number of query matches
(Section 3.5).

3.1 Training a Document Classifier

Our database classification technique relies on a document classifier to create
the probing queries, so our first step is to train such a classifier. We use super-
vised learning to construct the classifier from a set of preclassified documents.
The procedure follows a sequence of steps, described below.

The first step, which helps both efficiency and effectiveness, is to eliminate
from the training set all words that appear very frequently in the training
documents, as well as very infrequently appearing words. This initial “feature
selection” step is based on Zipf ’s law [Zipf 1949], which provides a functional
form for the distribution of word frequencies in document collections. Very fre-
quent words are usually auxiliary words that bear no information content (e.g.,
“am,” “and,” “so” in English). Infrequently occurring words are not very helpful
for classification either, because they appear in so few documents that there
are no significant accuracy gains from including such terms in a classifier.

The elimination of words dictated by Zipf ’s law is a form of feature selection.
However, frequency information alone is not, after some point, a good indicator
to drive the feature selection process further. Thus we use an information-
theoretic feature selection algorithm that eliminates the terms that have the

in the database irrelevant. Then the “perceived specificity” of the database for a given category for
which it has sufficient Coverage is 1, which would argue for the use of a coverage-based classification
of the database.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

8 • L. Gravano et al.

least impact on the class distribution of documents [Koller and Sahami 1997,
1996]. This step eliminates the features that either do not have enough dis-
criminating power (i.e., words that are not strongly associated with one specific
category) or features that are redundant given the presence of another feature.
Using this algorithm we decrease the number of features in a principled way
and we can use a much smaller subset of words to create the classifier, with min-
imal loss in accuracy. In addition, the remaining features are generally more
useful for classification purposes, so classifiers constructed from these features
will tend to include more meaningful terms.

After selecting the features (i.e., words) that we will use for building the
document classifier, we can use an existing machine learning algorithm to
create a document classifier. Many different algorithms for creating document
classifiers have been developed over the last few decades. Well-known tech-
niques include the Naive Bayes classifier [Duda and Hart 1973], C4.5 [Quinlan
1992], RIPPER [Cohen 1996], and Support Vector Machines [Joachims 1998],
to name just a few. These document classifiers work with a flat set of categories.
To define a document classifier over an entire hierarchical classification scheme
(Definition 2.1), we train one flat document classifier for each internal node of
the hierarchy.

Once we have trained a document classifier, we could use it to classify all
the documents in a database of interest to determine the number of documents
about each category in the database. We could then classify the database it-
self according to the number of documents that it contains in each category, as
described in Section 2. Of course, this requires having access to the whole con-
tents of the database, which is not a realistic requirement for Web databases.
We relax this requirement presently.

3.2 Defining Query Probes from a Rule-Based Document Classifier

In this section we first describe the class of rule-based classifiers and then we
show how we can use a rule-based classifier to generate a set of query probes
that will help us estimate the number of documents for each category of interest
in a searchable Web database.

In a rule-based classifier, the classification decisions are based on a set of
logical rules; the antecedents of the rules are conjunctions of words and the
consequents are the category assignments for documents. For example, the
following rules are part of a classifier for the three categories “Sports,” “Health,”
and “Computers.”

ibm AND computer→ Computers
jordan AND bulls→ Sports
diabetes→ Health
cancer AND lung→ Health
intel→ Computers

Such rules are used to classify previously unseen documents (i.e., documents
not in the training set). For example, the first rule would classify all documents
containing the words “ibm” and “computer” into the category “Computers.”

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 9

Definition 3.1. A rule-based document classifier for a flat set of categories
C = {C1, . . . , Cn} consists of a set of rules pk → Clk , k = 1, . . . , m, where pk is a
conjunction of words and Clk ∈ C. A document d matches a rule pk → Clk if all
the words in that rule’s antecedent pk appear in d . If a document matches mul-
tiple rules with different classification decisions, the final classification decision
depends on the specific implementation of the rule-based classifier.

We can simulate the behavior of a rule-based classifier over all documents
of a database by mapping each rule pk → Clk of the classifier into a Boolean
query qk that is the conjunction of all words in pk . Thus if we send the query
probe qk to the search interface of a database D, the query will match exactly
the f (qk) documents in the database D that would have been classified by the
associated rule into category Clk . For example, we map the rule jordan AND
bulls→ Sports into the Boolean query jordan AND bulls. We expect this query
to retrieve mostly documents in the “Sports” category. Now instead of retrieving
the documents themselves, we just keep the number of matches reported for
this query (it is quite common for a database to start the results page with a
line such as “X documents found”), and use this number as a measure of how
many documents in the database match the condition of this rule.

From the number of matches for each query probe, we can construct a good ap-
proximation of the Coverage and Specificity vectors for a database D (Section 2).
We can approximate the number of documents in D in category Ci as the total
number of matches from all query probes derived from rules with category Ci
as a consequent. Using this information we can approximate the Coverage and
Specificity vectors for D as follows.

Definition 3.2. Consider a searchable Web database D and a rule-based
classifier for a set of categories C. For each query probe q derived from the clas-
sifier, database D returns the number of matches f (q). The estimated coverage
of D for a category Ci ∈ C, ECoverage(D, Ci), is the total number of matches for
the Ci query probes.

ECoverage(D, Ci) =
∑

q is a query probe for Ci

f (q).

Definition 3.3. In the same setting as Definition 3.2, the estimated speci-
ficity of D for Ci, ESpecificity(D, Ci), is

ESpecificity(D, Ci) = ESpecificity(D, Parent(Ci)) · ECoverage(D, Ci)∑
Cj is a child of Parent (Ci)ECoverage(D, Cj)

.

As a special case, ESpecificity(D, “root ”) = 1.

Thus, Definition 3.3 tells us that the estimated specificity for a category Ci in D
is the estimated percentage of documents in D that are in Parent(Ci) multiplied
by the percentage of documents in Parent(Ci) that are also in Ci.

For notational convenience we define:
ECoverage(D) = 〈ECoverage(D, Ci1), . . . , ECoverage(D, Cim)〉

ESpecificity(D) = 〈ESpecificity(D, Ci1), . . . , ESpecificity(D, Cim)〉
when the set of categories {Ci1 , . . . , Cim} is clear from the context.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

10 • L. Gravano et al.

Fig. 2. Sending probes to the ACM Digital Library database with queries derived from a document
classifier.

Example 3.4. Consider a small rule-based document classifier for cate-
gories C1 = “Sports,” C2 = “Computers,” and C3 = “Health” consisting of the
five rules listed previously. Suppose that we want to classify the ACM Digital
Library database. We send the query ibm AND computer, which results in 6646
matching documents (Figure 2). The other four queries return the matches
described in Figure 2. Using these numbers we can estimate that the ACM
Digital Library has 0 documents about “Sports,” 6646+ 2380= 9026 docu-
ments about “Computers,” and 18+ 34= 52 documents about “Health.” Thus
the ECoverage(ACM) vector for this set of categories is:

ECoverage(ACM) = (0, 9026, 52)

and the respective ESpecificity(ACM) vector is:

ESpecificity(ACM) =
(

0
0+ 9026+ 52

,
9026

0+ 9026+ 52
,

52
0+ 9026+ 52

)
.

As defined above, the computation of ECoverage might count documents more
than once, since the same document might match multiple query probes. To ad-
dress this issue, we could issue query probes in order, augmenting each query
probe with the negation of all earlier query probes. Consider the five exam-
ple rules above, in the order they are listed. The first query would be ibm
AND computer, as before. However, the second query becomes jordan AND
bulls AND NOT (ibm AND computer), to not match (and count) any document
that matches the first query probe. This technique ensures that the final num-
ber of matches for each category is not artificially inflated by documents that
match multiple query probes. Unfortunately, if implemented in a naive way,
this overlap-elimination strategy may result in rather long query probes, which
might not be accepted by the databases. This problem could be partially solved
by “breaking” the long queries into smaller conjunctive queries. Then, by ex-
ploiting the inclusion-exclusion principle and the number of matches for each
of the smaller probes, we can calculate the number of matches for the complex
query. For example, instead of sending the query jordan AND bulls AND NOT
(ibm AND computer), we can find the number of matches for the query jordan

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 11

AND bulls and then subtract from it the number of matches generated for the
query jordan AND bulls AND ibm AND computer. Unfortunately, the num-
ber of probes needed for this strategy increases exponentially with the query
length. In Section 5 we experimentally evaluate the benefits of this expensive
overlap-elimination strategy.

3.3 Extracting Query Probes from Numerically Parameterized
Document Classifiers

We have seen so far that we can directly use a rule-based classifier to generate
the query probes required for our database classification technique. However,
restricting QProber to only rule-based classifiers would prevent us from ex-
ploiting other classification strategies as they are developed. In this section, we
describe how we can adapt numerically parameterized classifiers for use with
QProber. In particular we describe an algorithm that approximates a linear bi-
nary classifier with a set of classification rules. We also describe briefly how the
same algorithm can be modified to approximate different types of classifiers.
Finally, we give some pointers to existing work in the area of rule extraction.
Before describing the algorithm in detail, we define the terminology that we
use.

Definition 3.5. A binary classifier decides whether a document, repre-
sented using m features (i.e., words), belongs to one class or not. A binary
linear classifier makes this decision by calculating, during the training phase,
m weights w1, . . . , wm and a threshold b determining a hyperplane such that
all points t = 〈t1, . . . , tm〉 in the hyperplane satisfy the equation:

m∑
i=1

witi = b. (1)

This hyperplane divides the m-dimensional document space into two regions:
the region with the documents that belong to the class in question, and the
region with all other documents. Then, given the m-dimensional representation
〈s1, . . . , sm〉 of a document [Salton and Buckley 1988], the classifier calculates
the document’s “score” as

∑m
i=1 wisi. The value of this score relative to that of

threshold b determines the classification decision for the document.

A large number of classifiers fall into the category of linear classifiers.
Examples include Naive Bayes and Support Vector Machines (SVM) with lin-
ear kernel functions. Details on how to calculate these weights for SVMs and
for Naive Bayesian classifiers can be found in Burges [1998] and in Nilsson
[1990], respectively. A classifier for n classes can be created using n binary clas-
sifiers, one for each class. Note that such a composite classifier may result in a
document being categorized into multiple classes or into no classes at all.

We can use Equation (1) to approximate a linear classifier with a rule-based
classifier that will be used to generate the query probes. The intuition be-
hind the rule-extraction algorithm that we introduce next is that the presence
of a few highly weighted terms in a document suffices for the linear classi-
fier to make a positive decision (i.e., go above threshold). Our rule-extraction

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

12 • L. Gravano et al.

Fig. 3. Generating rules from a set of weights wi and a threshold b.

algorithm works by generating rules iteratively. In each iteration we create
rules of different length, that is, with a different number of terms in the an-
tecedents. During the first iteration, we consider only rules with one term. If
the weight of a term is higher than the threshold b, then this term is quali-
fied to form a rule, since the presence of this term alone suffices to classify a
document into the category. For efficiency and simplicity, the rules are formed
as conjunctions of terms with no negations. After creating all the rules with
one term, the algorithm proceeds to the next iteration, in which it creates rules
with two terms, and so on.

The algorithm is described in more detail in Figure 3. In general, a sufficient
condition for a set of terms to form a rule is that the sum of the weights of
its terms exceeds the value of the threshold b, when all weights defining the
separating hyperplane are nonnegative. Although the classifiers we consider do
not necessarily produce exclusively nonnegative weights, we nevertheless find
that our sufficiency criteria for extracting rules works reasonably well, since
the term weights generally tend to be nonnegative.

Also, the derived rule has to be “useful”: a rule is useful if and only if it covers a
given number of examples from the training set and its precision is greater than
0.5 (i.e., it matches more correct documents than incorrect ones). The terms that
form a rule are removed from further consideration and will not participate in
later iterations of the algorithm. Also, training examples that match a produced
rule are removed from the training set, and will not be used in later iterations.
To proceed to the next iteration, the algorithm expands unused term sets by one
term, in a spirit similar to an algorithm for finding “association rules” [Agrawal
and Srikant 1994]. In our algorithm, the “support” of a set of terms is defined
as the sum of the weights of its terms, and the objective is to extend the “small”
itemsets (i.e., the sets of terms whose sum of weights is smaller than b) to get
new itemsets with larger support.

Our rule extraction algorithm can be used for classifiers that divide the space
using a nonlinear polynomial as well. For example, SVMs with polynomial

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 13

kernels can be treated in a similar way by considering the weights associated
with all the higher-order terms in the function, but in this case the possible
combinations of terms that need to be considered is greatly increased.

The task of rule extraction from classification models that do not explicitly
represent their output as rules has been studied extensively in the machine
learning community. A typical example is the C4.5RULES algorithm [Quinlan
1992], which generates a set of production rules from a decision tree. Another
example is TREPAN [Craven 1996], which extracts a comprehensible set of rules
from a neural network. Flake et al. [2002] describe an algorithm for extraction
of rules from nonlinear SVMs. The ongoing research in rule extraction can be
directly leveraged to adapt different learning models for use with QProber.

3.4 Adjusting Probing Results

QProber relies on document classifiers to define query probes and obtain
category-frequency information for a database. Unfortunately, document
classifiers are not perfect because they can misclassify documents into incorrect
categories, and leave any documents that do not match any rules unclassified.
In this section we present a novel algorithm to adjust our initial probing results
to account for such potential errors.

It is common practice in the machine learning community to report document
classification results using a confusion matrix [Kohavi and Provost 1998]. We
adapt this notion of a confusion matrix for use in our probing scenario.

Definition 3.6. The normalized confusion matrix M = (mij) of a set of query
probes for categories C1, . . . , Cn is an n× n matrix, where mij is the sum of the
number of matches generated from documents in category Cj for category Ci
query probes, divided by the total number of documents in category Cj .

In a perfect setting, the probes for Ci match only documents in Ci and each
document in Ci matches exactly one probe for Ci. In this case the confusion
matrix is the identity matrix.

The algorithm to create the normalized confusion matrix M is:

(1) Generate the query probes from the classifier rules and probe a database
of unseen preclassified documents (i.e., the development set);

(2) Create an auxiliary confusion matrix X = (xij) and set xij equal to the sum
of the number of matches from Cj documents for category Ci query probes;

(3) Normalize the columns of X by dividing column j with the number of doc-
uments in the development set in category Cj . The result is the normalized
confusion matrix M .

Example 3.7. Suppose that we have a document classifier for three cate-
gories C1 = “Sports,” C2 = “Computers,” and C3 = “Health.” Consider 5100 un-
seen pre-classified documents with 1000 documents about “Sports,” 2500 docu-
ments about “Computers,” and 1600 documents about “Health.” After probing
this set with the query probes generated from the classifier, we construct the

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

14 • L. Gravano et al.

following confusion matrix.

M =

600

1000
100
2500

200
1600

100
1000

2000
2500

150
1600

50
1000

200
2500

1000
1600

 =
 0.60 0.04 0.125

0.10 0.80 0.09375

0.05 0.08 0.625

 .
Element m23 = 150/1600 indicates that the probes for C2 mistakenly gener-
ated 150 matches from the documents in C3 and that there are a total of 1600
documents in category C3.

Interestingly, multiplying the confusion matrix with the Coverage vector rep-
resenting the correct number of documents for each category in the development
set yields, by definition, the ECoverage vector with the number of documents
in each category in the development set as matched by the query probes.

Example 3.8. The Coverage vector with the actual number of documents in
the development set T for each category is Coverage(T) = (1000, 2500, 1600).
By multiplying M by this vector we get the distribution of document categories
in T as estimated by the query probing results.

 0.60 0.04 0.125
0.10 0.80 0.09375
0.05 0.08 0.625

︸ ︷︷ ︸

M

×
 1000

2500
1600

︸ ︷︷ ︸

Coverage(T)

=
 900

2250
1250

︸ ︷︷ ︸
ECoverage(T)

.

PROPOSITION 3.9. The normalized confusion matrix M is invertible when the
rules of the document classifier used to generate M match more correct documents
than incorrect ones.

PROOF. From the assumption on the document classifier, it follows that
mii >

∑n
j=1,i 6= j mij. Hence M is a diagonally dominant matrix with respect to

columns. Then the Gerschgorin circle theorem [Johnston 1971] indicates that
M is invertible.

We note that the condition that rules match more correct documents than in-
correct ones is a reasonable one, but a full discussion of this point is beyond the
scope of this article.

Proposition 3.9, together with the observation in Example 3.7, suggests a way
to adjust probing results to compensate for classification errors. More specifi-
cally, for an unseen database D that follows the same distribution of classifica-
tion errors as in our training collection it holds that:

M × Coverage(D) ∼= ECoverage(D).

Then multiplying by M−1 we have:

Coverage(D) ∼= M−1 × ECoverage(D).

Hence, during the classification of a database D, we multiply M−1 by
the probing results summarized in vector ECoverage(D) to obtain a better

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 15

Fig. 4. Algorithm for classifying a database D into the category subtree rooted at category C.

approximation of the actual Coverage(D) vector. We refer to this adjustment
technique as Confusion Matrix Adjustment or CMA for short.

3.5 Using Probing Results for Classification

So far we have seen how to accurately approximate the document category
distribution in a database. We now describe a probing strategy to classify a
database using these results.

We classify databases in a top-to-bottom way. Each database is first classified
by the root-level classifier and is then recursively “pushed down” to the lower-
level classifiers. A database D is pushed down to the category Cj when both
ESpecificity(D, Cj) and ECoverage(D, Cj) are no less than both threshold τes (for
specificity) and τec (for coverage), respectively. These thresholds will typically be
equal to the τs and τc thresholds used for the Ideal classification. The final set of
categories into which we classify D is the approximate classification of D in C.

Definition 3.10. Consider a classification scheme C with categories
C1, . . . , Cn and a database D. If ESpecificity(D) and ECoverage(D) are the
approximations of the ideal Specificity(D) and Coverage(D) vectors, respectively,
the approximate classification of D in C is the set Approximate(D) of categories
Ci that satisfy the following conditions.

—ESpecificity(D, Ci) ≥ τes,
—ESpecificity(D, Cj) ≥ τes for all ancestors Cj of Ci,
—ECoverage(D, Ci) ≥ τec,
—ECoverage(D, Cj) ≥ τec for all ancestors Cj of Ci, and
—ECoverage(D, Ck) < τec or ESpecificity(D, Ck) < τes for each of the children Ck

of Ci,

where 0 ≤ τes ≤ 1 and τec ≥ 1 are given thresholds.

The algorithm that computes this set is presented in Figure 4. To classify a
database D in a hierarchical classification scheme, we call Classify(“root”, D,
τec, τes, 1).

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

16 • L. Gravano et al.

Fig. 5. Classifying the ACM Digital Library database.

Example 3.11. Figure 5 shows how we categorized the ACM Digital
Library database. Each node is annotated with the ECoverage and ESpeci-
ficity estimates determined from query probes. The subset of the hierarchy
that we explored with these probes depends on the τes and τec thresholds of
choice, which for this case were τes = 0.5 and τec = 100. For example, the sub-
tree rooted at node “Science” was not explored, because the ESpecificity of this
node, 0.042, is less than τes. Intuitively, although we estimated that around
430 documents in the collection are generally about “Science,” this was not
the focus of the database and hence the low ESpecificity value. In contrast,
the “Computers” subtree was further explored because of its high ECoverage
(9919) and ESpecificity (0.95), but not beyond its children, since their ESpeci-
ficity values are less than τes. Hence the database is classified in Approximate=
{“Computers”}.

A potential problem with this algorithm is that a correct classification deci-
sion depends on correct classifications in all the nodes that are on the path
from the root node to the correct category node(s). Any error made along
the path to the correct node is unrecoverable. An alternative approach is to
probe the database using the classifiers of all the nodes in the classifica-
tion scheme and then decide on the classification based on the overall re-
sults. However, this approach would require a much larger number of query
probes and would considerably increase the cost of our method. Previous work
in hierarchical document classification [Sahami 1998] has outlined other ap-
proaches to address this problem, but a full discussion of such extensions
is beyond the scope of this article. We simply note here that the techniques
used in the case of hierarchical document classification can be adapted for
use in the case of hierarchical database classification that we address in this
work.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 17

4. EXPERIMENTAL SETTING

We now describe the data (Section 4.1), techniques we compare (Section 4.2),
and metrics (Section 4.3) for our experimental evaluation.

4.1 Data Collections

To evaluate our classification techniques, we first define a comprehensive clas-
sification scheme (Section 2.1) and then build text classifiers using a set of
preclassified documents. We also specify the databases over which we tuned
and tested our probing techniques.

Rather than defining our own classification scheme arbitrarily from scratch
we instead rely on that of existing directories. More specifically, for our ex-
periments we picked the five largest top-level categories from Yahoo!, which
were also present in InvisibleWeb. These categories are “Arts,” “Computers,”
“Health,” “Science,” and “Sports.” We then expanded these categories up to two
more levels by selecting the four largest Yahoo! subcategories also listed in
InvisibleWeb. (InvisibleWeb largely agrees with Yahoo! on the top-level cate-
gories in their classification scheme.) The resulting three-level classification
scheme consists of 72 categories, 54 of which are leaf nodes in the hierarchy. A
small fraction of the classification scheme is shown in Figure 5.

To train a document classifier over our hierarchical classification scheme we
used postings from newsgroups that we judged relevant to our various leaf-
level categories. For example, the newsgroups comp.lang.c and comp.lang.c++
were considered relevant to category “C/C++.” We collected 500,000 articles
from April through May 2000. 54,000 out of the 500,000 articles, 1000 per
leaf category, were used to train the document classifiers, and 27,000 articles
were set aside as a development collection for the classifier (500 articles per leaf
category). The training set included 381 duplicate articles and 105 of them were
crossposted to multiple newsgroups in our dataset. We removed all headers from
the newsgroup articles, with the exception of the “Subject” line; we also removed
the email addresses contained in the articles. Except for these modifications,
we made no other changes to the collected documents. We used the remaining
419,000 articles to build controlled databases as we report below.

To evaluate database classification strategies we used two kinds of databases:
“Controlled ” databases that we assembled locally and that allowed us to per-
form a variety of sophisticated studies, and real “Web” databases.

Controlled Database Set. We assembled 500 databases using the 419,000
newsgroup articles not used in training the classifier. Duplicates accounted
for 7246 articles. As before, we assume that each article was labeled with one
category from our classification scheme, according to the newsgroup where it
originated. Thus an article from newsgroups comp.lang.c or comp.lang.c++
was regarded as relevant to category “C/C++,” since these newsgroups were
assigned to category “C/C++.” The size of the 500 Controlled databases that we
created ranged from 25 to 25,000 documents. Out of the 500 databases, 350 were
“homogeneous,” with documents from a single category, and the remaining 150
were “heterogeneous,” with a variety of category mixes. We define a database as

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

18 • L. Gravano et al.

Table I. Some of the Real Web Databases in the Web Set

URL InvisibleWeb Category
http://www.cancerbacup.org.uk/search/swish.htm Cancer
http://search.java.sun.com Java
http://hopkins-aids.edu/site/search.html AIDS
http://www.agiweb.org/cgi-bin/search.cgi Earth Science
http://mathCentral.uregina.ca/QQ/QQsearch.html Mathematics

“homogeneous” when it has articles from only one node, regardless of whether
this node is a leaf node. If it is not a leaf node, then it has an equal number
of articles from each leaf node in its subtree. The “heterogeneous” databases,
on the other hand, have documents from different categories that reside in the
same level in the hierarchy (not necessarily siblings), with different mixture
percentages. We believe that these databases model real-world searchable Web
databases, with a variety of sizes and foci. These databases were indexed and
queried by a SMART-based program [Salton and McGill 1997] supporting both
Boolean and vector-space retrieval models.

Web Database Set. We also evaluate our techniques on real Web-accessible
databases over which we do not have any control. We picked the first five
databases listed in the InvisibleWeb directory under each node in our clas-
sification scheme (recall that our classification scheme is a portion of Invis-
ibleWeb). This resulted in 130 real Web databases. (Some of the lower-level
nodes in the classification scheme have fewer than five databases assigned to
them.) Articles that are “newsgroup style” discussions similar to the databases
in the Controlled set can be found in 12 out of the 130 databases; the other 118
databases have articles of various styles, ranging from research papers to film
reviews. For each database in the Web set, we constructed a simple wrapper
to send a query and get back the number of matches for each query, which is
the only information that our database classification procedure requires. From
the initially selected databases, very few (about 5) did not return the number
of matches for the submitted queries. Since QProber needs these numbers to
classify the databases, we decided not to include these databases in the Web set.
The database wrappers were manually configured to send conjunctive queries
to each Web database in the proper format. (For example, some databases re-
quire the use of the + sign in front of the keywords, whereas others require the
use of the “AND” operator.) Also, whenever possible, we configured the wrap-
pers with the appropriate settings so that the full underlying databases (rather
than, say, a topically focused fraction) are searched. Table I lists five example
databases from the Web set.

4.2 Techniques for Comparison

We tested variations of our classification technique, which we refer to as
“QProber,” against two alternative strategies. The first one is an adapta-
tion of the technique described in Callan et al. [1999], which we refer to as
“Document Sampling.” The second one is a method described in Wang et al.
[2000] that was specifically designed for database classification. We refer to this
method as “Title-Based Querying.” The methods are described in detail below.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 19

4.2.1 QProber. This is our technique, described in Section 3, which uses
a document classifier for each internal node of our hierarchical classification
scheme. Several parameters and options were involved in the training of the
document classifiers. For feature selection, we started by eliminating from con-
sideration any word in a list of 400 very frequent words (e.g., “a”, “the”) from the
SMART [Salton and McGill 1997] information retrieval system. We then further
eliminated all infrequent words that appeared in fewer than three documents.
We treated the root node of the classification scheme as a special case, since
it covers a much broader spectrum of documents. For this node, we eliminated
words that appeared in fewer than five documents. Also, we considered applying
the information-theoretic feature selection algorithm from Koller and Sahami
[1997, 1996]. We studied the performance of our system without this feature se-
lection step (FS= off) and with this step, in which we kept only the top 10% most
discriminating words (FS= on). We also experimented with different kinds of
classifiers. We created rule-based classifiers using RIPPER [Cohen 1996], as
well as using C4.5RULES to extract rules from decision trees generated by
C4.5 [Quinlan 1992]. We refer to these two versions of QProber as QP-RIPPER
and QP-C4.5, respectively. In addition, we used our technique described in
Section 3.3 to derive classification rules from Naive Bayes classifiers [Duda
and Hart 1973] and Support Vector Machines with linear kernels [Joachims
1998]. We refer to these versions as QP-Bayes and QP-SVM, respectively. After
setting up the system, the main parameters that can be varied in our database
classification technique are thresholds τec (for coverage) and τes (for speci-
ficity). Different values for these thresholds result in different approximations,
Approximate(D), of the ideal classification, Ideal(D).

4.2.2 Document Sampling (DS). Callan et al. [Callan et al. 1999; Callan
and Connell 2001] use query probing to automatically construct a “language
model” of a text database (i.e., to extract the vocabulary and associated word-
frequency statistics). Queries are sent to the database to retrieve a representa-
tive random document sample. The documents retrieved are analyzed to extract
the words that appear in them. Although this technique was not designed for
database classification, we decided to adapt it to our task as follows.

1. Pick a random word from a dictionary and send a one-word query to the
database in question.

2. Retrieve the top-N documents returned by the database for the query.
3. Extract the words from each document and update the list and frequency of

words accordingly.
4. If a termination condition is met, go to Step 5; else go to Step 1.
5. Use a modification of the algorithm in Figure 4 that classifies the documents

in the sample document collection rather than probing the database itself
with the classification rules.

For Step 1, we used a random word from the approximately 100,000 words
in our newsgroup collection. For Step 2, we used N = 4, which is the value
that Callan et al. [1999] recommend. Finally, for the termination condition in

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

20 • L. Gravano et al.

Step 4 we used both the termination conditions described in Callan and Connell
[2001] and in Callan et al. [1999]. In Callan and Connell [2001] the algorithm
terminates after the retrieval of 500 documents, and in Callan et al. [1999]
the algorithm terminates when the vocabulary and frequency statistics asso-
ciated with the sample document collection converge to a reasonably stable
state. We refer to the version of the Document Sampling technique described
in Callan et al. [1999] as DS99, and we refer to the newer version described
in Callan and Connell [2001] simply as DS. After the construction of the lo-
cal document sample, the adapted technique can proceed almost identically as
in Section 3.5 by classifying the locally stored document sample rather than
the original database. In our experiments using Document Sampling and lin-
ear classifiers, we used the originally generated linear classifiers and not the
rule-based approximations, since the documents in this case are available lo-
cally and there is no need to approximate the existing classifiers with rule sets.
The variations of Document Sampling that use different classifiers are named
DS-RIPPER, DS-C4.5, DS-Bayes, and DS-SVM, depending on the classifier
used. We also tested the DS99 technique with different classifiers; the results,
however, were consistently worse compared to those for the newer DS tech-
nique. For brevity, in Section 5 we only report the results obtained for DS99
with the RIPPER document classifier. A crucial difference between the Docu-
ment Sampling technique and QProber is that QProber only uses the number of
matches reported by each database, whereas the Document Sampling technique
requires retrieving and analyzing the actual documents from the database.

4.2.3 Title-Based Querying (TQ). Wang et al. [2001] present three different
techniques for the classification of searchable Web databases. For our experi-
mental evaluation we picked the method they deemed best. Their technique
creates one long query for each category using the title of the category itself
(e.g., “Baseball”) augmented by the titles of all of its subcategories. For exam-
ple, the query for category “Baseball” is “baseball mlb teams minor leagues
stadiums statistics college university. . . .” The query for each category is sent to
the database in question, the top-ranked results are retrieved, and the average
similarity [Salton and McGill 1997] of these documents and the query defines
the similarity of the database with the category. The database is then classified
into the categories that are most similar to it. A significant problem with this
approach is the fact that a large number of Web-based databases will prune the
query if it exceeds a specific length. For example, Google8 truncates any query
with more than 10 words. The results returned from the database in such cases
will not be the expected ones with respect to all the original query terms. The
details of the algorithm are described below.

1. For each category Ci:
(a) Create an associated “concept query,” which is simply the title of the

category augmented with the titles of its subcategories;
(b) Send the “concept query” to the database in question;

8http://www.google.com.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 21

(c) Retrieve the top-N documents returned by the database for this query;
(d) Calculate the similarity of these N documents with the query. The av-

erage similarity will be the similarity of the database to category Ci;
2. Rank the categories in order of decreasing similarity to the database;
3. Assign the database to the top-K ranked categories from the hierarchy.

To create the concept queries of Step 1, we augmented our hierarchy with an
extra level of “titles,” as described in Wang et al. [2000] . For Step 1(c) we used
the value N = 10, as recommended by the authors. We used the cosine simi-
larity function with tf.idf weighting [Salton and Buckley 1988]. Unfortunately,
the value of K in Step 3 is left as an open parameter in Wang et al. [2000].
We decided to favor this technique in our experiments by “revealing” to it the
correct number of categories into which each database should be classified. Of
course this information would not be available in a real setting, and was not
provided to QProber or the Document Sampling technique.

4.3 Evaluation Metrics

We evaluated classification algorithms by comparing the approximate clas-
sification Approximate(D) that they produce against the ideal classifica-
tion Ideal(D). We could have just reported the fraction of the categories in
Approximate(D) that were correct (i.e., that also appeared in Ideal(D)). However,
this would not have captured the nuances of hierarchical classification. For ex-
ample, we may have classified a database in the category “Sports,” whereas it is
a database about “Basketball.” The metric above would consider this classifica-
tion as absolutely wrong, which is not appropriate since, after all, “Basketball”
is a subcategory of “Sports.” With this in mind, we adapted the precision and
recall metrics from information retrieval [Cleverdon and Mills 1963]. We first
introduce an auxiliary definition. Given a set of categories N , we “expand” it
by including all the subcategories of the categories in N , in essence, taking the
downward closure of the set of categories N in the classification hierarchy C.
Thus Expanded(N) = {c ∈ C|c ∈ N or c is in a subtree of some n ∈ N }. Now we
can define precision and recall as follows.

Definition 4.1. Consider a database D that is classified into the set of cat-
egories Ideal(D), and an approximation of Ideal(D) given in Approximate(D).
Let Correct=Expanded(Ideal(D)) and Classified=Expanded(Approximate(D)).
Then the precision and recall of the approximate classification of D are:

precision = |Correct ∩ Classified|
|Classified|

recall = |Correct ∩ Classified|
|Correct| .

To condense precision and recall into one number, we use the F1-
measure [van Rijsbergen 1979],

F1 = 2 · precision · recall
precision+ recall

,

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

22 • L. Gravano et al.

which is only high when both precision and recall are high, and is low for design
options that trivially obtain high precision by sacrificing recall or vice versa.

Example 4.2. Consider the classification scheme in Figure 5. Suppose that
the ideal classification for a database D is Ideal(D)={“Programming ”}. Then
the Correct set of categories includes “Programming” and all its subcategories,
namely, “C/C++,” “Perl,” “Java,” and “Visual Basic.” If we approximate Ideal(D)
as Approximate(D)={“Java”} using the algorithm in Figure 4, then we do not
manage to capture all categories in Correct. In fact we miss four out of five
such categories and hence recall= 0.2 for this database and approximation.
However, the only category in our approximation, “Java,” is a correct one, and
hence precision= 1. The F1-measure summarizes recall and precision in one
number, F1 = (2 · 1 · 0.2)/(1+ 0.2) = 0.33.

An important property of classification strategies over the Web is scalability.
We measure the efficiency of the various techniques that we compare by model-
ing their cost. More specifically, the main cost we quantify is the number of “in-
teractions” required with the database to be classified, where each interaction
is either a query submission (needed for all three techniques) or the retrieval
of a database document (needed only for Document Sampling and Title-Based
Querying). Of course, we could include other costs in the comparison (namely,
the cost of parsing the results and processing them), but we believe that they
would not affect our conclusions, since these costs are CPU-based and are small
compared to the cost of interacting with the databases over the Internet.

All methods parse the query result pages to get the information they need.
Our method requires very simple parsing, namely, just getting the number of
matches from a line of the result. The other two methods require a more ex-
pensive analysis to identify the actual documents in the result. To simplify our
analysis, we disregard the cost of result parsing, since considering this cost
would only benefit our technique in the comparison. In addition, all methods
have a local processing cost to analyze the results of the probing phase. This
cost is negligible compared to the cost of query submission and document re-
trieval. Our method requires the multiplication of the results with the inverse
of the normalized confusion matrices. These are m × m matrices where m is
at most the largest number of subcategories for a category in the hierarchical
classification scheme. (Recall that we have a small rule-based document clas-
sifier for each node in a hierarchical classification scheme.) Since m will rarely
exceed, say, 15 categories in a reasonable scheme, this cost will be small. The
local processing costs for Document Sampling are similar to our method, except
for the fact that Document Sampling has to classify the locally stored collection
of sample documents. We also consider this cost negligible relative to other cost
components. Finally, Title-Based Querying requires calculating the similarities
of the documents with the query, and ranking the categories accordingly. Again,
we do not consider this cost in our comparative evaluation.

5. EXPERIMENTAL RESULTS

We now report experimental results that we used to tune our system
(Section 5.1) and to compare the different classification alternatives both

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 23

Table II. The F1-Measure for QP-Bayes, With and Without Feature Selection (FS) and
Confusion-Matrix Adjustment (CMA)

QP-Bayes
FS= on FS= off

Node CMA= on CMA= off CMA= on CMA= off
root 0.8957 0.8025 0.8512 0.7811
root-arts 0.9152 0.9136 0.8223 0.8313
root-arts-literature 0.6811 0.6984 0.6595 0.6822
root-arts-music 0.8736 0.8712 0.5298 0.8160
root-computers 0.7715 0.7384 0.7515 0.7245
root-computers-programming 0.9617 0.8854 0.8297 0.8633
root-computers-software 0.7158 0.7654 0.6679 0.7856
root-health 0.7966 0.7871 0.5740 0.7036
root-health-diseases 0.9213 0.9034 0.7213 0.8060
root-health-fitness 0.8707 0.8854 0.7516 0.8620
root-science 0.9034 0.8070 0.7009 0.7769
root-science-biology 0.9293 0.8829 0.8762 0.8383
root-science-earth 0.8555 0.8165 0.6062 0.8520
root-science-math 0.7805 0.7373 0.6907 0.6150
root-science-socialsciences 0.9282 0.8797 0.8092 0.7020
root-sports 0.9205 0.8657 0.8944 0.9095
root-sports-basketball 0.9214 0.8252 0.8028 0.8229
root-sports-outdoors 0.9674 0.9295 0.9459 0.8814

for the Controlled database set (Section 5.2) and for the Web database set
(Section 5.3).

5.1 Tuning QProber and DS

QProber and DS have some open parameters that we tuned experimentally by
using a set of 100 Controlled databases (Section 4.1). These databases did not
participate in any of the subsequent experiments.

We examined whether the information-theoretic feature selection
(Section 4.2) and the confusion matrix adjustment of the probing results
(Section 3.4) affected the classification accuracy. We ran QProber with (FS= on)
and without (FS= off) this feature selection step, and with (CMA= on) and
without (CMA= off) the confusion matrix adjustment step, and we evaluated
the classification results of the individual classifiers. We did this for our four
versions of QProber, namely, QP-RIPPER, QP-C4.5, QP-Bayes, and QP-SVM.
Unfortunately, the C4.5 classifier underlying QP-C4.5 could not handle the
training set with all the features, so we could not create the C4.5 classifiers
with FS= off. However, it is reported that feature selection helps C4.5 avoid
overfitting [Kohavi and John 1997; Koller and Sahami 1996]; hence we believe
that the results without feature selection would have been worse for QP-C4.5
anyway. We performed the same experiment for the five different versions of
DS as well. Since the conclusions from the experiments were similar, in the
following we only report the results for the tuning of QProber.

For evaluation, we used the F1-measure for the flat set of categories associ-
ated with each classifier and for each of the 100 databases that contained doc-
uments in the categories in question. We compared the average performance of
the classifiers over the training set. Tables II through V report the results for all

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

24 • L. Gravano et al.

Table III. The F1-Measure for QP-C4.5, With and Without
Confusion Matrix Adjustment (CMA)

QP-C4.5
Node CMA= on CMA= off
root 0.9195 0.8509
root-arts 0.9000 0.8693
root-arts-literature 0.7895 0.7774
root-arts-music 0.8755 0.8898
root-computers 0.8620 0.8374
root-computers-programming 0.9226 0.9017
root-computers-software 0.8151 0.8497
root-health 0.8724 0.8580
root-health-diseases 0.9611 0.9374
root-health-fitness 0.7976 0.8251
root-science 0.9322 0.9108
root-science-biology 0.9160 0.9201
root-science-earth 0.5299 0.6198
root-science-math 0.6992 0.6977
root-science-socialsciences 0.9262 0.8898
root-sports 0.9189 0.8864
root-sports-basketball 0.8486 0.8463
root-sports-outdoors 0.8405 0.8510

Table IV. The F1-Measure for QP-SVM, With and Without Feature Selection (FS), and
Confusion Matrix Adjustment (CMA)

QP-SVM
FS= on FS= off

Node CMA= on CMA= off CMA= on CMA= off
root 0.9384 0.8876 0.9170 0.8503
root-arts 0.9186 0.7704 0.9109 0.8373
root-arts-literature 0.6891 0.7543 0.6307 0.7547
root-arts-music 0.9436 0.9031 0.9422 0.9126
root-computers 0.7531 0.7529 0.5575 0.7510
root-computers-programming 0.9193 0.9305 0.9714 0.9375
root-computers-software 0.6347 0.7102 0.6930 0.8587
root-health 0.9149 0.8811 0.9406 0.9001
root-health-diseases 0.9414 0.9159 0.9545 0.9052
root-health-fitness 0.9299 0.9441 0.9165 0.8764
root-science 0.9368 0.8535 0.9377 0.8675
root-science-biology 0.9704 0.9623 0.9567 0.9120
root-science-earth 0.8302 0.8092 0.6579 0.8076
root-science-math 0.7847 0.8088 0.5419 0.8173
root-science-socialsciences 0.7802 0.7312 0.7733 0.7633
root-sports 0.8990 0.7958 0.9330 0.8323
root-sports-basketball 0.9099 0.8466 0.9727 0.9523
root-sports-outdoors 0.9724 0.9205 0.9703 0.9431

the nonleaf nodes of our classification scheme; the best results are highlighted
in boldface.

The results were conclusive for the confusion matrix adjustment (CMA).
For QP-RIPPER, the results were consistently better after the application of
the adjustment. For the other QProber versions, CMA improved the results in
the majority of the cases, especially for the nodes in the higher levels of the

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 25

Table V. The F1-Measure for QP-RIPPER, With and Without Feature Selection (FS) and
Confusion Matrix Adjustment (CMA)

QP-RIPPER
FS= on FS= off

Node CMA= on CMA= off CMA= on CMA= off
root 0.9578 0.8738 0.9274 0.8552
root-arts 0.9521 0.8293 0.9460 0.8763
root-arts-literature 0.8220 0.7872 0.8462 0.8374
root-arts-music 0.9555 0.9386 0.9622 0.9259
root-computers 0.9412 0.8844 0.9376 0.8997
root-computers-programming 0.9701 0.9444 0.9546 0.9368
root-computers-software 0.7923 0.7321 0.8125 0.7694
root-health 0.9801 0.9301 0.9606 0.8956
root-health-diseases 0.9678 0.9156 0.9658 0.9221
root-health-fitness 0.9259 0.8878 0.9136 0.8946
root-science 0.9651 0.8817 0.9634 0.8854
root-science-biology 0.9720 0.9391 0.9717 0.9391
root-science-earth 0.9038 0.8639 0.8905 0.8403
root-science-math 0.9244 0.8806 0.9326 0.8849
root-science-socialsciences 0.9320 0.8932 0.9207 0.8824
root-sports 0.9458 0.8939 0.9447 0.8832
root-sports-basketball 0.9536 0.9107 0.9591 0.9024
root-sports-outdoors 0.9720 0.9357 0.9566 0.9227

hierarchy, which have the highest impact on overall classification accuracy. We
believe that the adjustment did not have the desired results in some lower-level
nodes because the number of documents used to create the confusion matrices
was smaller for these nodes than for the higher-level ones (where CMA was
always beneficial). Notwithstanding these shortcomings of CMA, we decided to
use CMA for the rest of our experiments.

Our results for the feature selection step agreed mostly with existing results
in the area. In particular, the results for QP-Bayes were consistently better af-
ter the application of the feature selection step. This result agreed with earlier
work in the field of feature selection [Koller and Sahami 1996]. For QP-RIPPER
the results were mixed: feature selection improved the classifier’s accuracy for
most, but not all, of the nodes. However, the loss in accuracy was small for those
cases where feature selection hurt accuracy. Given that after feature selection
the training of the classifier can be performed in a fraction of the time that would
be required otherwise, we believe that feature selection is a worthwhile step in
this case as well. Finally, the results for QP-SVM were inconclusive, confirm-
ing earlier results in the area of document classification [Joachims 1998]: the
impact of the feature selection step on this version of QProber was significantly
smaller than on the other cases.

For the experiments in the remainder of the article, we picked the best clas-
sifier for each node individually. Hence some nodes used the feature selection
step and others did not. This flexibility is an advantage of the hierarchical
classification scheme over a simple flat scheme: each node can be configured
separately. Even if this results in longer tuning time, this flexibility can lead to
better classification results. It is also possible to use different kinds of classifiers
for each node; for example, we could have used an SVM classifier for one node

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

26 • L. Gravano et al.

and a RIPPER classifier for another. To keep our experiments manageable, we
did not try this otherwise interesting variation.

We now turn to reporting the results of the experimental comparison of the
different versions of QProber, Document Sampling, and Title-Based Querying
over the 400 unseen databases in the Controlled set and the 130 databases in
the Web set.

5.2 Results over the Controlled Databases

Accuracy for Different τs and τc Thresholds. As explained in Section 2.2,
Definition 2.5, the ideal classification of a database depends on two parame-
ters: τs (for specificity) and τc (for coverage). The values of these parameters
are an “editorial decision” and depend on whether we decide that our clas-
sification scheme is specificity- or coverage-oriented, as discussed previously.
To classify a database, both QProber and the Document Sampling techniques
need analogous thresholds τes and τec. We ran experiments over the Controlled
databases for different combinations of the τs and τc thresholds, which result in
different ideal classifications for the databases. Intuitively, for low specificity
thresholds τs, the Ideal classification will have the databases assigned mostly to
leaf nodes, whereas a high specificity threshold might lead to databases being
classified at more general nodes. Similarly, low coverage thresholds τc produce
Ideal classifications where the databases are mostly assigned to the leaves, and
higher values of τc tend to produce classifications with the databases assigned
to higher-level nodes.

For the different versions of QProber and DS we set τes = τs and τec = τc. Title-
Based Querying does not use any such threshold, but instead needs to decide
how many categories K to assign to a given database (Section 4.2). Although, of
course, the value of K would be unknown to a classification technique (unlike
the values for thresholds τs and τc), we reveal K to this technique, as discussed
in Section 4.2.

Figure 6 shows the average value of the F1-measure for varying τes = τs
and for τec = τc = 8, over the 400 unseen databases in the Controlled set. The
results were similar for other values of τec = τc as well. In general, two varia-
tions of QProber, QP-RIPPER and QP-SVM, perform best for a wide range of
τes = τs values, with QP-RIPPER exhibiting a small performance advantage
over QP-SVM. This similar performance is expected since SVMs are known
to perform well with text, so even a rule-based approximation of them can
reach the performance of a pure rule-based classifier such as RIPPER. Given
that optimizing rule extraction was not the focus of this article, we expect that
QP-SVM can be further optimized. The effectiveness of two variations of DS,
DS-RIPPER and DS-SVM, was also good, although it was slightly inferior to
that of their respective QProber counterparts. In addition, as we show, their
cost is much higher than the QProber versions. The comparison of the other
versions of QProber with their DS analogues reveals that QProber generally
performs better than DS and that sampling using random queries is infe-
rior to using a focused, carefully chosen set of queries learned from training
examples.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 27

Fig. 6. The average F1-measure of the different techniques for varying specificity threshold τes
(τec = 8).

An interesting conclusion from our experiments is that the new version of DS
that retrieves a constant number of documents from each database performs
much better than the old version DS99. The results for DS99 were consistently
worse than those for DS because DS99 usually stops before retrieving as many
documents as DS, and hence it does not manage to create a good representative
profile of the databases.

Finally, the comparison of the other techniques with Title-Based Querying
(TQ) reveals that TQ cannot outperform any version of QProber or Document
Sampling except for the case when τs = 1. For this setting, even very small
estimation errors for QProber and Document Sampling result in errors in the
database classification (e.g., even if QProber estimates 0.9997 specificity for
one category it will not classify the database into that category due to its “low
specificity”).

Figure 7 shows the average value of the F1-measure for varying τec = τc
with τes = τs = 0.4. The results were similar for other values of τes = τs as
well. Again, QP-RIPPER and QP-SVM outperform the other methods and each
version of QProber outperforms its DS counterpart. Title-Based Querying in
general performs worse than any other technique, and only outperforms DS99
for high values of threshold τc.

Effect of Depth of Hierarchy on Accuracy. An interesting question is
whether classification performance is affected by the depth of the classification

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

28 • L. Gravano et al.

Fig. 7. The average F1-measure of the different techniques for varying coverage threshold τec
(τes = 0.4).

hierarchy. We tested the different methods against “adjusted” versions of our
hierarchy from Section 4.1. Specifically, we first used our original classifica-
tion scheme with three levels (level= 3). Then we eliminated all the categories
of the third level to create a shallower classification scheme (level= 2). We
repeated this process again, until our classification schemes consisted of one
single node (level= 0). Of course, the performance of all the methods at this
point was perfect. In Figure 8 we compare the performance of the different
methods for τes = τs = 0.4 and τec = τc = 8 (the trends were the same for
other threshold combinations as well). The results confirmed our earlier ob-
servations: QProber performs better than the other techniques for different
depths, with only a smooth degradation in performance for increasing hier-
archy depth, suggesting that our approach can scale to a large number of
categories.

Efficiency of the Classification Methods. As we discussed in Section 4.3, we
compare the number of queries sent to a database during classification and the
number of documents retrieved, since the other costs involved are comparable
for the three methods. The Title-Based Querying technique has a constant cost
for each classification: it sends 1 query for each category in the classification
scheme and retrieves 10 documents from the database. Thus this technique
sends 72 queries and retrieves 720 documents for our 72-node classification
scheme. QProber sends a variable number of queries to the database being

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 29

Fig. 8. The average F1-measure for hierarchies of different depths (τs = τes = 0.4, τc = τec = 8).

classified. The exact number depends on how many times the database will
be “pushed down” a subcategory (Figure 4). Our technique does not retrieve
any documents from the database. Finally, the Document Sampling methods
(DS and DS99) send queries to the database and retrieve 4 documents for each
query until the termination condition is met. We list in Figure 9 the average
number of “interactions” for varying values of specificity threshold τs = τes
with τc = τec = 8. Figure 10 shows the average number of “interactions” for
varying coverage threshold τc = τec with τs = τes = 0.4. The results show that
both variations of Document Sampling are the most expensive methods. This
happens because Document Sampling sends a large number of queries to the
database that do not match any documents. Such queries in the Document
Sampling method are a large source of overhead. On the other hand, when few
documents match a specific query probe from QProber, this reveals that there
is a lack of documents that belong to the category associated with this probe.
The results of such queries are thus effectively used by QProber for the final
classification decision.

For low values of the specificity and coverage thresholds τes and τec,
Title-Based Querying performs fewer “interactions” than some versions of
QProber. This happens because for these settings the variations of QProber
tend to push databases down the hierarchy more easily, which in turn trans-
lates into more query probes. However, the cheapest variant of QProber, namely,
QP-SVM, is always cheaper than Title-Based Querying, and it always greatly
outperforms it in terms of accuracy.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

30 • L. Gravano et al.

Fig. 9. The average number of “interactions” with the databases as a function of threshold τes
(τec = 8).

Finally, the QProber queries are short, consisting on average of only 1.5
words, with a maximum of 4 words. In contrast, the average Title-Based
Querying query probe consisted of 18 words, with a maximum of 348 words.
Such long queries may be problematic to process for some searchable Web
databases.

Eliminating Overlap Between Query Probes. As discussed in Section 3.2,
a potential problem with QProber is that its query probes may overlap with
respect to the documents that they match. A single document might match sev-
eral query probes for a single category and would then be “counted” multiple
times by QProber. A possible fix for this problem is to augment each query
probe with the negation of all earlier probes so that only “new” matches are
counted each time. (See Section 3.2 for more details.) Figure 11 shows the per-
formance of this overlap-elimination refinement of QP-RIPPER and QP-SVM
against the performance of their original versions without overlap elimination.
Surprisingly, the overlap-elimination refinement resulted in slightly degraded
classification accuracy. A possible explanation for this phenomenon is that the
original versions of QProber might actually benefit from probe overlap, since
“double-counting” might help compensate for the low recall of some of the query
probes. Given these results, and especially considering that overlap elimination
is expensive (Section 3.2), we do not consider this QProber refinement further.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 31

Fig. 10. The average number of “interactions” with the databases as a function of threshold τec
(τes = 0.4).

Using Different Document Retrieval Models. Up until now, we have assumed
that the text databases support a Boolean model of document retrieval. In other
words, given a Boolean query (e.g., a conjunction of terms), each database re-
turns the exact number of documents that match the query in a Boolean sense
(e.g., the number of documents in the database that contain all query terms
in a conjunction). We now relax this assumption and study the accuracy of
the classification algorithms over databases that support other document re-
trieval models. Specifically, we focus on databases supporting the vector-space
retrieval model [Salton and McGill 1983], where a query is simply a list of words,
and the query results are a list of documents ordered by document-query sim-
ilarity. In the common case in which Boolean-query semantics is supported in
conjunction with ranked query results, QProber can proceed as described so
far, with no modification. (The document order in the results is irrelevant to
QProber, since QProber does not actually examine the documents.) However, if
only some form of OR semantics is implicitly used, then the number of matches
returned by a vector-space database for a query is no longer the number of
documents with, say, all query terms, but usually a higher number. We ran the
various classification algorithms over the Controlled databases, now running a
vector-space query interface based on the SMART system [Salton and McGill
1997]. Figure 12 shows the results that we obtained, together with the corre-
sponding earlier results for a Boolean interface. As expected, the accuracy of
all QProber versions is worse for the pure vector-space case, but still acceptable

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

32 • L. Gravano et al.

Fig. 11. The average F1-measure for QP-RIPPER and QP-SVM with and without overlap elimi-
nation, as a function of threshold τes (τec = 8).

especially for QP-SVM and QP-RIPPER, which dominate with high F1-measure
values.

5.3 Results over the Web Databases

The experiments over the Web databases involved only the QProber system,
which was the system that performed best over the Controlled databases. Also,
to keep the overall load on the test sites low, we tested only the QP-RIPPER ver-
sion of QProber, which had the best performance over the Controlled databases.
Finally, to keep the training cost low we used the same classifiers learned using
the Controlled set to probe the Web databases (i.e., the probes were derived from
newsgroup articles). Naturally we expect that the results reported below could
be further improved by training the classifiers over Web data (e.g., downloaded
from sites with crawlable contents).

For the experiments over the Controlled set, the classification thresholds
τs and τc of choice were known. In contrast, for the databases in the Web set
we are assuming that their Ideal classification is whatever categories were
chosen (manually) by the InvisibleWeb directory (Section 4.1). This classifica-
tion of course does not use the τs and τc thresholds in Definition 2.5, so we
cannot use these parameters as in the Controlled case. However, we assume
that InvisibleWeb (and any consistent categorization effort) implicitly uses the
notion of specificity and coverage thresholds for their classification decisions.
Hence we try to learn such thresholds from a fraction of the databases in the

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 33

Fig. 12. The average F1-measure for the classification techniques over databases with Boolean
and vector-space interfaces, and for varying τes (τec = 8).

Web set, use these values as the τes and τec thresholds for QProber, and val-
idate the performance of our technique over the remaining databases in the
Web set.

Accuracy for Different τs and τc Thresholds. For the Web set, the Ideal clas-
sification for each database is taken from InvisibleWeb. To find the τs and τc
that are “implicitly used” by human experts at InvisibleWeb, we split the Web
set into three disjoint sets W1, W2, and W3. We first use the union of W1 and
W2 to learn the values of τs and τc by exhaustively exploring a number of com-
binations and picking the τes and τec value pair that yield the best F1-measure
(Figure 13). As we can see, the best values correspond to τes = 0.4 and τec = 8,
with F1 = 0.69. To validate the robustness of the conclusion, we test the perfor-
mance of QProber over the third subset of the Web set, W3. For the given values
of τes and τec the F1-measure over the unseen W3 set is 0.68, which is very close to
the F1-measure over training sets W1 and W2. Hence the training to find the τs
and τc values was successful, since the pair of thresholds that we found performs
equally well for the InvisibleWeb categorization of unseen Web databases. We
performed threefold cross-validation [Mitchell 1997] for this threshold learn-
ing by training on W2 and W3 and testing on W1, and finally training on W1
and W3 and testing on W2. Table VI summarizes the results. The results were
consistent, confirming the fact that the values of τes = 0.4 and τec ≈ 8 are not
overfitting the databases in our Web set.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

34 • L. Gravano et al.

Fig. 13. Average F1-measure values for the Web databases for different combinations of τes and
τec.

Table VI. Results of Threefold Cross-Validation over the Web Databases

Training F1-measure over F1-measure over
Subset Learned τs, τc Training Subset Test Subset Test Subset
W1 ∪W2 0.4, 16 0.69 W3 0.68
W1 ∪W3 0.4, 8 0.68 W2 0.67
W2 ∪W3 0.4, 8 0.71 W1 0.69

To get a better intuition about the type of errors committed by QProber, we
checked the type of misclassifications it performed. For τes = 0.4 and τec = 8,
QProber classified 49 out of the 130 databases perfectly. QProber also classified
15 other databases under a child of the correct node (e.g., “Basketball ” rather
than “Sports”), 5 databases under a sibling of the correct node (e.g., “Baseball ”
rather than “Basketball ”), and 26 databases into the parent of the correct node
(e.g., “Programming ” rather than “Java”). QProber also classified 35 databases
under the correct node, but also (incorrectly) under some additional node

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 35

Fig. 14. Average number of query probes for the Web databases as a function of τes and τec.

(e.g., “Basketball ” in addition to “Computers”). In general, the errors were
caused either by some errors in the early stages of the classification (which
result in some extra categories), or by erroneous decisions not to “push down”
a database as far down as needed.

Effect of Depth of Hierarchy on Accuracy. We also tested our method for
hierarchical classification schemes of various depths using τes = 0.4 and τec = 8.
The F1-measure was 1, 0.89, 0.79, and 0.69 for hierarchies of depth zero, one,
two, and three, respectively. We can see that the F1-measure drops smoothly
as the hierarchy depth increases, leading us to believe that our method can
scale to even larger classification schemes without significant degradation in
accuracy.

Efficiency of the Classification Method. The cost of classification for different
combinations of thresholds is shown in Figure 14. As the thresholds increase,
the number of queries issued decreases, as expected, since it is more difficult to
“push” a database down a subcategory and trigger another probing phase. The
cost is generally low: only a few hundred queries suffice on average to classify
a database with high accuracy. Specifically, for the best setting of thresholds
(τs = 0.4 and τc = 8), QProber sends, on average, only 120 query probes to each
database in the Web set. As we mentioned, the average query probe consists of
only 1.5 words.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

36 • L. Gravano et al.

6. RELATED WORK

Although work in text database classification is relatively new, there has been
substantial ongoing research in text document classification. Such research in-
cludes the application of a number of learning algorithms to categorizing text
documents. In addition to the rule-based classifiers based on RIPPER used in
our work, other methods for learning classification rules based on text doc-
uments have been explored [Apte et al. 1994]. Furthermore, many other for-
malisms for document classifiers have been the subject of previous work, in-
cluding the Rocchio algorithm based on the vector space model for document
retrieval [Rocchio 1971], linear classification algorithms [Lewis et al. 1996],
Bayesian networks [McCallum and Nigam 1998], and, most recently, Support
Vector Machines [Joachims 1998], to name just a few. As seen in our experi-
mental results, we have also made use of several such document classifiers in
conjunction with QProber. Moreover, extensive comparative studies among text
classifiers have also been performed [Schuetze et al. 1995; Dumais et al. 1998;
Yang and Liu 1999], reflecting the relative strengths and weaknesses of these
various methods.

Orthogonally, a large body of work has been devoted to the interaction with
searchable databases, mainly in the form of metasearchers [Gravano et al. 1999;
Meng et al. 1998; Xu and Callan 1998]. A metasearcher receives a query from a
user, selects the best databases to which to send the query, translates the query
in a proper form for each search interface, and merges the results from the dif-
ferent sources. Query probing has been used in this context mainly for the prob-
lem of database selection. Specifically, Callan et al. [Callan et al. 1999; Callan
and Connell 2001] probe text databases with random queries to determine an
approximation of their vocabulary and associated statistics (“language model”).
(We adapted this technique for the task of database classification to define the
Document Sampling technique of Section 4.2.) Craswell et al. [2000] compare
the performance of different database selection algorithms in the presence of
such “language models.” Hawking and Thistlewaite [1999] use query probing to
perform database selection by ranking databases by similarity to a given query.
Their algorithm assumes that the query interface can handle normal queries
and query probes differently and that the cost to handle query probes is smaller
than that for normal queries. Sugiura and Etzioni [2000] use query probing for
query expansion to route Web queries to the appropriate search engines. Meng
et al. [1999] use guided query probing to determine sources of heterogeneity in
the algorithms used to index and search locally at each text database. Ipeirotis
and Gravano [2002] build on QProber to develop a content summary extraction
technique for text databases. They also show that these content summaries,
in conjunction with the database categorization, can be used to design hierar-
chical database selection algorithms that are more effective than their “flat”
counterparts.

Query probing has also been used for other tasks. Perkowitz et al.
[1997] use it to automatically understand query forms and extract infor-
mation from Web databases to build a comparative shopping agent. New
forms of crawlers [Raghavan and Garcı́a-Molina 2001] use query probing to

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 37

automatically interact with Web forms and crawl the contents of hidden-Web
databases. Cohen and Singer [1996] use RIPPER to learn queries that mainly
retrieve documents about a specific category. The queries are used at a later
time to retrieve new documents about this category. Their query generation step
is similar to QProber’s (Section 3.1). Flake et al. [2002] extract rules from non-
linear SVMs that identify documents with a common characteristic (e.g., “call
for papers”). The generated rules are used to modify queries sent to a search
engine, so that the queries retrieve mostly documents of the desired kind.
In Grefenstette and Nioche [2000] query probing is employed to determine
the use of different languages on the Web. The query probes are words that
appear only in one language. The number of matches generated for each probe
is subsequently used to estimate the number of Web pages written in each
language. Ghani et al. [2001] automatically generate queries to retrieve docu-
ments written in a specific language. Finally, the QXtract system [Agichtein and
Gravano 2003] automatically generates queries to improve the efficiency of a
given information extraction system such as Snowball [Agichtein and Gravano
2000] or Proteus [Yangarber and Grishman 1998] over large text databases.
Specifically, QXtract learns queries that tend to match the database documents
that are useful for the extraction task at hand. This way, the information ex-
traction system can focus on these documents and ignore the rest, which results
in large performance improvements.

For the task of database classification, Gauch et al. [1996] manually con-
struct query probes to facilitate the classification of text databases. Dolin et al.
[1999] use Latent Semantic Indexing [Deerwester et al. 1990] with metrics
similar to Specificity and Coverage to categorize collections of documents. The
crucial difference with QProber is that the documents in the collection are avail-
able for inspection and not hidden behind search interfaces. Wang et al. [2000]
present the Title-Based Querying technique that we described in Section 4.2.
Our experimental evaluation showed that QProber significantly outperforms
Title-Based Querying, both in terms of efficiency and effectiveness. Our tech-
nique also outperforms our adaptation of the random document sampling tech-
nique in Callan et al. [1999] and Callan and Connell [2001]. In Gravano et al.
[2002], we also compared QProber with a crawling-based approach to classify
searchable databases that are crawlable. We showed that the query-based ap-
proach is significantly faster and even more accurate at times than an approach
that crawls, downloads, and locally classifies Web pages. We originally pre-
sented the QP-RIPPER version of QProber in Ipeirotis et al. [2001b], on which
this article builds.

7. FURTHER DISCUSSION AND FUTURE WORK

QProber relies on databases returning the number of matches for each query
probe. If a database does not return this number, then QProber cannot be used
in an efficient way. (It might still be possible to count the number of matches
by inspecting all result pages. However, this approach will be inefficient for
databases that return a large number of results.) Document Sampling can be
used as an alternative to classify such databases. Also, QProber might not work

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

38 • L. Gravano et al.

well when the number of matches reported by a database is bounded by an
upper threshold (e.g., some databases might indicate “more than 1000 matches
for this query” rather than listing the exact number of matches). The number of
databases that truncated the number of matches in our Web set was small (less
than five) so we cannot derive conclusive results about the accuracy of QProber
in this relatively rare scenario.

One potential problem for any query-based sampling technique is that some
databases might use the robots.txt file [Koster 2002] to prohibit automatic
querying. Of the 130 Web databases in our Web set, 62 had a robots.txt file
(restricting access to at least part of the site), out of which only 18 prohibited
crawling under the directory that hosted the search interface. It is unclear if this
restriction was intended to prohibit automatic querying, or just to prevent Web
crawlers from crawling parts of the Web site that are generated dynamically.
If automatic querying is restricted at a database, then any method based on
query sampling will fail to work with such a database.

Also, another potential problem for QProber that is a subject of future work
is “spamming”: malicious databases might report incorrect numbers of matches
for the probes. This would, of course, result in erroneous classifications. We be-
lieve that a “lie detection” mechanism can be used to identify databases that
return an inconsistent or inflated number of matches. For example, we could
send queries such as “a AND b,” “a AND NOT b,” and “b AND NOT a,” and
keep track of the number of matches for each one of them. Then we can send
the queries “a” and “b.” By comparing the number of matches for the two sets of
queries we can identify inconsistencies. To detect inflated numbers of matches,
we could use the following algorithm. Start by sending a random keyword as
a probe. If it returns a large number of matches, add some extra keywords to
the probe, until the returned number of matches is small. Then download the
returned articles to check that they are indeed different and that they contain
the required keywords. By performing this test, we can verify that the database
returns legitimate results. We believe that variations of the (admittedly sim-
plistic) strategies above might help QProber identify and handle “suspicious”
databases.

Finally, a step that would completely automate the classification process is
to eliminate the need for a human to construct the simple wrapper for each
database to classify. This step can be eliminated by automatically learning how
to parse the query result pages. Perkowitz et al. [1997] have studied how to au-
tomatically characterize and understand Web forms, and we plan to apply some
of these results to automate the interaction with search interfaces. Our tech-
nique is particularly well suited for this automation, since it needs only very
simple information from result pages (i.e., the number of matches for a query).
Furthermore, the patterns used by Web search engines to report the number
of matches for queries are quite similar. For example, one representative pat-
tern is the appearance of the word “of ” before reporting the actual number of
matches for a query (e.g., “30 out of 1024 matches displayed”). Of the 130 Web
databases in the Web set 76 use this pattern to report the number of matches.
Another common pattern is the appearance of the word “found” near the num-
ber of matches (e.g., “1349 matches found”). This pattern appears in 52 cases.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 39

Similar patterns with the words “matches,” “matching,” “matched,” and so on
match the results page of 59 databases, and 18 databases use the word “results.”
Similarly, the syntax of Boolean queries varies little across databases (e.g., ibm
AND computer vs. +ibm +computer), which makes the query translation com-
ponent of our simple wrapper another candidate for automation. Based on this
anecdotal information, it seems realistic to envision a completely automatic
classification system.

8. CONCLUSIONS

This article introduced QProber, a technique for hierarchically classifying text
databases that are accessible on the Web. We provided a formal definition of
our classification task, together with a scalable classification algorithm that
adaptively issues query probes to databases. This algorithm involves learn-
ing document classifiers, which serve as the foundation for building query
probes. Turning a rule-based classifier into query probes is straightforward.
For nonrule-based numerically parameterized classifiers, we described an al-
gorithm for extracting rules that can then be easily turned into query probes.
We also presented a method for adjusting the number of matches returned by
databases in response to query probes to improve categorization accuracy and
compensate for classifier errors. Finally, we showed how to make classifica-
tion assignments based on the adjusted count information. Our technique is
efficient and scalable, and does not require retrieving any documents from the
databases. Extensive experimental results show that the method proposed here
is both more accurate and more efficient than existing methods for database
classification. A demo of the QProber system [Ipeirotis et al. 2001a] is publicly
available for experimentation at http://qprober.cs.columbia.edu.

ACKNOWLEDGMENTS

We thank Pedro Falcao Goncalves for his contributions during the initial stages
of this project. Panagiotis G. Ipeirotis thanks the Trustees of Empeirikeio
Foundation for their support.

REFERENCES

AGICHTEIN, E. AND GRAVANO, L. 2000. Snowball: Extracting relations from large plain-text collec-
tions. In Proceedings of the Fifth ACM Conference on Digital Libraries (DL 2000).

AGICHTEIN, E. AND GRAVANO, L. 2003. Querying text databases for efficient information extraction.
In Proceedings of the Nineteenth IEEE International Conference on Data Engineering (ICDE
2003).

AGRAWAL, R. AND SRIKANT, R. 1994. Fast algorithms for mining association rules. In Proceedings
of the Twentieth International Conference on Very Large Databases (VLDB’94), 487–499.

APTE, C., DAMERAU, F., AND WEISS, S. M. 1994. Automated learning of decision rules for text cate-
gorization. ACM Trans. Inf. Syst. 12, 3, 233–251.

BURGES, C. J. 1998. A tutorial on support vector machines for pattern recognition. Data Mining
Knowl. Discov. 2, 2 (June), 121–167.

CALLAN, J. AND CONNELL, M. 2001. Query-based sampling of text databases. ACM Trans. Inf.
Syst. 19, 2, 97–130.

CALLAN, J. P., CONNELL, M., AND DU, A. 1999. Automatic discovery of language models for text
databases. In Proceedings of the 1999 ACM SIGMOD International Conference on Management
of Data (SIGMOD’99), 479–490.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

40 • L. Gravano et al.

CLEVERDON, C. W. AND MILLS, J. 1963. The testing of index language devices. Aslib Proc. 15, 4,
106–130.

COHEN, W. AND SINGER, Y. 1996. Learning to query the Web. In AAAI Workshop on Internet-Based
Information Systems, 16–25.

COHEN, W. W. 1996. Learning trees and rules with set-valued features. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence (AAAI-96) Eighth Conference on Inno-
vative Applications of Artificial Intelligence (IAAI-96), 709–716.

CRASWELL, N., BAILEY, P., AND HAWKING, D. 2000. Server selection on the World Wide Web. In
Proceedings of the Fifth ACM Conference on Digital Libraries (DL 2000), 37–46.

CRAVEN, M. 1996. Extracting comprehensible models from trained neural networks. PhD Thesis,
University of Wisconsin-Madison, Department of Computer Sciences. Also appears as UW Tech.
Rep. CS-TR-96-1326.

DEERWESTER, S. C., DUMAIS, S. T., LANDAUER, T. K., FURNAS, G. W., AND HARSHMAN, R. A. 1990. In-
dexing by latent semantic analysis. J. Amer. Soc. Inf. Sci. 41, 6, 391–407.

DOLIN, R., AGRAWAL, D., AND EL ABBADI, A. 1999. Scalable collection summarization and selection.
In Proceedings of the Fourth ACM International Conference on Digital Libraries (DL’99), 49–58.

DUDA, R. O. AND HART, P. E. 1973. Pattern Classification and Scene Analysis. Wiley, New York.
DUMAIS, S. T., PLATT, J., HECKERMAN, D., AND SAHAMI, M. 1998. Inductive learning algorithms and

representations for text categorization. In Proceedings of the 1998 ACM CIKM International
Conference on Information and Knowledge Management, 148–155.

FLAKE, G., GLOVER, E., LAWRENCE, S., AND GILES, C. 2002. Extracting query modifications from non-
linear SVMs. In Proceedings of the Eleventh International World Wide Web Conference (WWW11).

GAUCH, S., WANG, G., AND GOMEZ, M. 1996. ProFusion*: Intelligent fusion from multiple, dis-
tributed search engines. J. Univ. Comput. Sci. 2, 9 (Sept.), 637–649.

GHANI, R., JONES, R., AND MLADENIC, D. 2001. Using the Web to create minority language corpora.
In Proceedings of the 2001 ACM CIKM International Conference on Information and Knowledge
Management, 279–286.

GRAVANO, L., GARCÍA-MOLINA, H., AND TOMASIC, A. 1999. GlOSS: Text-source discovery over the
Internet. ACM Trans. Database Syst. 24, 2 (June), 229–264.

GRAVANO, L., IPEIROTIS, P. G., AND SAHAMI, M. 2002. Query- vs. crawling-based classification of
searchable web databases. IEEE Data Eng. Bull. 25, 1 (Mar.), 43–50.

GREFENSTETTE, G. AND NIOCHE, J. 2000. Estimation of English and non-English language use on
the WWW. In Recherche d’Information Assistée par Ordinateur (RIAO 2000).

HAWKING, D. AND THISTLEWAITE, P. B. 1999. Methods for information server selection. ACM Trans.
Inf. Syst. 17, 1 (Jan.), 40–76.

IPEIROTIS, P. G. AND GRAVANO, L. 2002. Distributed search over the hidden Web: Hierarchical
database sampling and selection. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002).

IPEIROTIS, P. G., GRAVANO, L., AND SAHAMI, M. 2001a. PERSIVAL demo: Categorizing hidden-Web
resources. In Proceedings of the First ACM+IEEE Joint Conference on Digital Libraries (JCDL
2001), 454.

IPEIROTIS, P. G., GRAVANO, L., AND SAHAMI, M. 2001b. Probe, count, and classify: Categorizing
hidden-Web databases. In Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2001), 67–78.

JOACHIMS, T. 1998. Text categorization with support vector machines: Learning with many rele-
vant features. In ECML-98, Tenth European Conference on Machine Learning, 137–142.

JOHNSTON, R. 1971. Gershgorin theorems for partitioned matrices. Lin. Algeb. Appl. 4, 3 (July),
205–220.

KOHAVI, R. AND JOHN, G. H. 1997. Wrappers for feature subset selection. Artif. Intell. 97, 1–2,
(special issue on Relevance), 273–323.

KOHAVI, R. AND PROVOST, F. 1998. Glossary of terms. J. Mach. Learn. 30, 2/3, 271–274. Editorial
for the special issue on Applications of Machine Learning and the Knowledge Discovery Process.

KOLLER, D. AND SAHAMI, M. 1996. Toward optimal feature selection. In Proceedings of the Thir-
teenth International Conference on Machine Learning (ICML’96), 284–292.

KOLLER, D. AND SAHAMI, M. 1997. Hierarchically classifying documents using very few words. In
Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), 170–178.

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

QProber: Automatic Hidden-Web Database Classification • 41

KOSTER, M. 2002. Robots exclusion standard. Available at http://www.robotstxt.org/.
LEWIS, D. D., SCHAPIRE, R. E., CALLAN, J. P., AND PAPKA, R. 1996. Training algorithms for linear

text classifiers. In Proceedings of the Nineteenth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR’96, 298–306.

MCCALLUM, A. AND NIGAM, K. 1998. A comparison of event models for naive Bayes text classifica-
tion. In Learning for Text Categorization: Papers from the 1998 AAAI Workshop, 41–48.

MENG, W., LIU, K.-L., YU, C. T., WANG, X., CHANG, Y., AND RISHE, N. 1998. Determining text databases
to search in the Internet. In Proceedings of the 24th International Conference on Very Large
Databases (VLDB’98), 14–25.

MENG, W., YU, C. T., AND LIU, K.-L. 1999. Detection of heterogeneities in a multiple text database
environment. In Proceedings of the Fourth IFCIS International Conference on Cooperative Infor-
mation Systems (CoopIS 1999), 22–33.

MITCHELL, T. M. 1997. Machine Learning. McGraw-Hill, New York.
NILSSON, N. J. 1990. The Mathematical Foundations of Learning Machines. Morgan-Kaufmann,

San Francisco. Previously published as: Learning Machines, 1965.
PERKOWITZ, M., DOORENBOS, R. B., ETZIONI, O., AND WELD, D. S. 1997. Learning to understand

information on the Internet: An example-based approach. J. Intell. Inf. Syst. 8, 2 (Mar.), 133–153.
QUINLAN, J. 1992. C4.5: Programs for Machine Learning. Morgan-Kaufmann, San Francisco.
RAGHAVAN, S. AND GARCÍA-MOLINA, H. 2001. Crawling the hidden Web. In Proceedings of the 27th

International Conference on Very Large Databases (VLDB 2001), 129–138.
ROCCHIO, J. 1971. Relevance feedback in information retrieval. In The SMART Information Re-

trieval System. Prentice-Hall, Englewood Cliffs, NJ, 313–323.
SAHAMI, M. 1998. Using machine learning to improve information access. PhD Thesis, Stanford

University, Computer Science Department.
SALTON, G. AND BUCKLEY, C. 1988. Term-weighting approaches in automatic text retrieval. Inf.

Process. Manage. 24, 513–523.
SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval. McGraw-Hill,

New York.
SALTON, G. AND MCGILL, M. J. 1997. The SMART and SIRE experimental retrieval systems. In

Readings in Information Retrieval. Morgan-Kaufmann, San Francisco, 381–399.
SCHUETZE, H., HULL, D., AND PEDERSEN, J. 1995. A comparison of document representations and

classifiers for the routing problem. In Proceedings of the Eighteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR’95, 229–237.

SUGIURA, A. AND ETZIONI, O. 2000. Query routing for Web search engines: Architecture and exper-
iments. In Proceedings of the Ninth International World Wide Web Conference (WWW9).

VAN RIJSBERGEN, K. 1979. Information Retrieval (2nd edition). Butterworths, London.
WANG, W., MENG, W., AND YU, C. 2000. Concept hierarchy based text database categorization in

a metasearch engine environment. In Proceedings of the First International Conference on Web
Information Systems Engineering (WISE 2000), 283–290.

XU, J. AND CALLAN, J. P. 1998. Effective retrieval with distributed collections. In Proceedings of the
21st Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’98, 112–120.

YANG, Y. AND LIU, X. 1999. A re-examination of text categorization methods. In Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR’99, 42–49.

YANGARBER, R. AND GRISHMAN, R. 1998. NYU: Description of the Proteus/PET system as used for
MUC-7. In Proceedings of the Seventh Message Understanding Conference (MUC-7).

ZIPF, G. K. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading,
MA.

Received August 2001; revised August 2002; accepted October 2002

ACM Transactions on Information Systems, Vol. 21, No. 1, January 2003.

