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Abstract—Many online or local data sources provide powerful querying mechanisms but limited ranking capabilities. For instance,

PubMed allows users to submit highly expressive Boolean keyword queries, but ranks the query results by date only. However, a user

would typically prefer a ranking by relevance, measured by an information retrieval (IR) ranking function. A naive approach would be to

submit a disjunctive query with all query keywords, retrieve all the returned matching documents, and then rerank them. Unfortunately,

such an operation would be very expensive due to the large number of results returned by disjunctive queries. In this paper, we present

algorithms that return the top results for a query, ranked according to an IR-style ranking function, while operating on top of a source

with a Boolean query interface with no ranking capabilities (or a ranking capability of no interest to the end user). The algorithms

generate a series of conjunctive queries that return only documents that are candidates for being highly ranked according to a

relevance metric. Our approach can also be applied to other settings where the ranking is monotonic on a set of factors (query

keywords in IR) and the source query interface is a Boolean expression of these factors. Our comprehensive experimental evaluation

on the PubMed database and a TREC data set show that we achieve order of magnitude improvement compared to the current

baseline approaches.

Index Terms—Hidden-web databases, keyword search, top-k ranking.
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1 INTRODUCTION

MANY online or local data sources provide powerful
querying mechanisms but limited ranking capabil-

ities. For instance, PubMed1 allows users to submit Boolean
keyword queries on the biomedical publications database,
but ranks the query results by publication date only.
Similarly, the US Patent and Trademark Office (USPTO)2

allows Boolean keyword queries or searching patents but
only ranks by patent date. Furthermore, job search
databases, such as the job search of LinkedIn,3 allow users
to sort job listings by date or title (alphabetically), but not by
IR relevance of the job posting to the submitted query. As a
more recent example, the micro-blogging service Twitter4

offers a highly expressive Boolean search interface but
ranks the results by date only. In most cases, these sources
do not allow downloading and indexing of data or the size
of the underlying database makes any comprehensive
download [1], [2] an expensive operation.

Often, the user prefers a ranking other than the default
sorting (e.g., by date) provided by the source. For instance, a
user of the PubMed or USPTO Web sites may prefer a ranking
by relevance [3], [4], measured by an Information Retrieval
(IR) ranking function, as opposed to a date-based retrieval.
Given that traditional IR ranking functions [5] like Okapi [6]
and BM25 [7] implicitly assume disjunctive (OR) semantics,
the naive approach would be to submit to the database a
disjunctive query with all query keywords, retrieve all the
returned documents, and then rank them according to the
relevance metric of choice. However, this would be very
expensive due to the large number of results returned by
disjunctive queries. For example, consider the query “im-
munodeficiency virus structure,” an example query used to
teach information specialists how to search the PubMed
database [8]. Executing the corresponding disjunctive query
“immunodeficiency OR virus OR structure” on PubMed
returns 1,451,446 publication results. Downloading and
ranking them is infeasible for an interactive query system,
even if the source is on the local network. The problem
becomes even more critical if we use the public web services
provided by PubMed for programmatic (API) access over the
web. Given the large overhead incurred when retrieving
publications, PubMed imposes quotas on the amount of data
an application can retrieve per minute, rendering infeasible
any attempt to download large number of documents.

To overcome such problems, in this paper, we present
algorithms to compute the top results for an IR ranked
query, over a source with a Boolean query interface but
without any ranking capabilities (or with a ranking function
that is generally uncorrelated to the user’s ranking: e.g., by
date). A key idea behind our technique is to use a
probabilistic modeling approach, and estimate the distribu-
tion of document scores that are expected to be returned by
the database. Hence, we can estimate what are the minimum
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cutoff scores for including a document in the list of highly
ranked documents. To achieve this result over a database
that allows only query-based access of documents, we
generate a querying strategy that submits a minimal
sequence of conjunctive queries to the source. (Note that
conjunctive queries are cheaper since they return signifi-
cantly fewer results than disjunctive ones.) After every
submitted conjunctive query we update the estimated
probability distributions of the query keywords in the
database and decide whether the algorithm should termi-
nate given the user’s results confidence requirement or
whether further querying is necessary; in the latter case, our
algorithm also decides which is the best query to submit
next. For instance, for the above query “immunodeficiency
virus structure,” the algorithm may first execute “immuno-
deficiency AND virus AND structure,” then “immunodefi-
ciency AND structure” and then terminate, after estimating
that the returned documents contain all the documents that
would be highly ranked under an IR-style ranking mechan-
ism. As we will see, our work fits into the “exploration
versus exploitation” paradigm [9], [10], [11], since we
iteratively explore the source by submitting conjunctive
queries to learn the probability distributions of the key-
words, and at the same time we exploit the returned
“document samples” to retrieve results for the user query.

Our approach can also be extended and applied to other
settings where the ranking is monotonic on a set of factors
(query keywords in IR) and the source query interface is a
Boolean expression of these factors. For instance, consider a
database of products with Boolean attributes, like cars for
sale that have attributes such as “used,” “new,” “two-
doors,” “four-doors,” “convertible,” and so on. Suppose
that the query interface only allows specifying attribute
values (e.g., “used AND convertible AND two-doors”).
Suppose the source ranks cars always by price. If the user
wants to rank by a weighted sum of the attribute values
(e.g., 0:2 � usedþ 0:4 � convertibleþ 0:4 � two� doors), then
we can apply an adaptation of our approach.

Our work has the following contributions:

1. We define the novel problem of applying ranking on
top of sources with no ranking capabilities by
exploiting their query interface.

2. We describe sampling strategies for estimating the
relevance of the documents retrieved by different
keyword queries. We present a static sampling
approach and a dynamic sampling approach that
simultaneously executes the query, estimates the
parameters required for efficient query execution,
and compensates for the biases in the sampling
process.

3. We present algorithms that, given a user confidence
input, retrieve a minimal number of results from the
source through submitting high-selectivity (conjunc-
tive) queries, so that the user’s confidence require-
ment is satisfied.

4. We experimentally evaluate our algorithms using the
PubMed database and examine two settings: 1) the
remote setting, where we use web services to query
the database, and 2) the local setting where we query
a locally installed subset of PubMed. Our results
show an order of magnitude improvement compared
to the naive query evaluation approach.

The rest of the paper is organized as follows: In Section 2,
we describe related work and place our work in the context
of the existing literature. In Section 3 we give the framework,
problem definition, and notation, while in Section 4 we
outline the basic ideas of our approach. Then, in Section 5 we
describe in detail our algorithms, and in Section 6 we
present the results of our experiments. Finally, Section 7
concludes the paper.

2 RELATED WORK

A preliminary version of this work has been published as a
short paper in [12].

2.1 Top-k Queries

A significant amount of work has been devoted to the
evaluation of top-k queries in databases. Ilyas et al. [13]
provide a survey of the research on top-k queries on
relational databases. This line of work typically handles the
aggregation of attribute values of objects in the case where
the attribute values lie in different sources [14], [15] or in a
single source [16]. Theobald et al. [17] describe a framework
for generating an approximate top-k answer, with some
probabilistic guarantees. In our work, we use the same idea;
the main and crucial difference is that we only have
“random access” to the underlying database (i.e., through
querying), and no “sorted access.” Theobald et al. assumed
that at least one source provides “sorted access” to the
underlying content.

2.2 Exploration versus Exploitation

The idea of the exploitation/exploration tradeoff [9], [10], [11]
(also called the “multi-armed bandit problem”) is to
determine a strategy of sequential execution of actions, each
of which has a stochastic payoff. While executing an action we
get back some (uncertain) payoff, and at the same time we get
some information that allows us to decrease the uncertainty
of the payoff of future actions. In our work, we are trying to
maximize the payoff/exploitation of each query (which is the
number of new, relevant top-k documents that the query
retrieves) while minimizing the expense/exploration (num-
ber of queries sent, and documents retrieved).

2.3 Deep Web

Our work bears some similarities to the problem of searching
and extracting data from the Deep Web [18] databases. Meng
et al. [19], [20] examine the problem of estimating the number
of useful documents in the database, assuming that the
statistics about the frequency and the tf.idf weights of each
word in the database is given. In our work, we estimate such
statistics on-the-fly, as part of the explorative sampling
process. Ntoulas et al. [2] attempt to download the contents of
a Deep Web database by issuing queries through a web form
interface. The goal of Ntoulas et al. is to download and index
the contents of databases with limited query capabilities,
whereas in our case the focus is on achieving on-the-fly
ranking of query results, on top of sources with no (or
nonuseful) ranking capabilities. An alternative approach is to
characterize databases by extracting a small sample of
documents that is then used to describe the contents of the
database. For example, it is possible to use query-based
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sampling [21], [22] to extract such a document sample,
generate estimates for the distribution of each term, and then
use the estimates to guide the choice of queries that should be
submitted to the database. In the experimental section, we
compare against this “static sampling” alternative and
demonstrate the superiority of the dynamic sampling
technique, which dynamically generates estimates tailored
to the query at hand.

3 PROBLEM DEFINITION

3.1 Query Model

Consider a text database D with documents d; . . . ; dm. The
user submits a keyword query Q ¼ ft1 . . . tng containing the
terms t1 . . . tn. The answer to the query is a list of the top k
documents; the documents are ranked according to a
relevance score scoreðQ; dÞ, which estimates the relevance
of a document d to the query Q.

The score of a document can be computed using any of
the the well studied tf.idf scoring functions like BM25 and
Okapi [5], [6], [7]. The key arguments of a tf.idf function are
the term frequency (tf), the document frequency (df) and
the document length (dl). The term frequency tfðt; dÞ is the
number of times that the word t appears in document d. The
document frequency dfðt; DÞ is the number of documents
in D that contain t. Hence, scoreðQ; dÞ ¼ F ðtf; df; dlÞ. At its
basic form, the tf.idf ranking function is

scoreðQ; dÞ ¼
X
t2Q;d

tfðt; dÞ � ln jDj þ 1

dfðt;DÞ ; ð1Þ

where jDj ¼ m is the size of the database D. In our
experiments, we use the Okapi scoring function, although
any other tf.idf function could be used. For simplicity
though we use the basic tf.idf scoring function as the
running example.

3.2 Data Source Model

We assume that database D is only accessible through a
Boolean query interface and we do not have direct access to
the underlying documents. The query interface evaluates
the Boolean query Q and returns the documents ranked
using a nondesirable ranking function, e.g., by date (as is
the case for PubMed and USPTO).

For instance, if the user query is Q ¼ [anemia, diabetes,
sclerosis], then we can submit to the data source queries
q1 ¼ [anemia AND diabetes AND sclerosis], q2 ¼ [anemia
AND diabetes AND NOT sclerosis], q3 ¼ [diabetes OR
sclerosis], and so on. The returned results are guaranteed
to match the Boolean conditions but the documents are not
expected to be ranked in any useful manner.

3.3 Objective

We want to devise a scheme for retrieving from D the top-k
documents, ranked according to F ðtf; df; dlÞ. The trivial
solution is to send an extremely broad disjunctive query,
returning all documents that have a nonzero F ðtf; df; dlÞ
score. Then, we can retrieve the documents, examine their
contents, and rerank them locally before presenting the
results to the user. Unfortunately, this is a very time-
consuming solution. Therefore, our objective is to construct
a query sequence q1; q2; . . . ; qv of Boolean queries, that can
be submitted to the database, retrieve as few documents as

possible, and still contain all the documents that would be
in the top-k results.

Table 1 presents the key notations used in this paper.

4 OVERVIEW OF APPROACH

As mentioned above, our approach is based on choosing the
best sequence q1; q2; . . . ; qv of Boolean queries to submit to
the data source, such that we retrieve the top-k ranked
documents for Q. Of course, to select the best sequence of
queries, we need to know some statistics about the type of
documents retrieved by each query qi. To get these statistics
we need to sample the database through query-based
sampling. So, through querying we are both retrieving
documents to generate the necessary statistics and at the
same time aim to retrieve documents that are in the top-k
relevant documents. So, we can consider our approach as a
case of “exploration versus exploitation.”

Even though we can use any Boolean query in our
strategy, we only consider conjunctive Boolean queries as
candidates, given that a disjunctive query can be split to a set
of conjunctive queries. Conjunctive queries provide a good
query granularity and simplify the analysis below. Note that
in practice we add negation conditions to the issued
conjunctive queries in order to avoid retrieving the same
results multiple times. For instance, if Q ¼ fa; bg, after
submitting q1 ¼ a AND b, we submit q2 ¼ a AND NOT b
instead of q2 ¼ a.

So, what are the goals of our querying strategy?
Following (1), we need to know the tf and df values for
the terms in the database, to estimate the similarity score of
a query to a document. Using these values, we can then
estimate the overall similarity score distribution for all the
documents in the database. Given the score distribution, we
can compute how many documents in the database have
score higher than the documents that we have seen so far.

The relatively easy part is the estimation of the df values.
We can estimate these values in two ways: 1) We can send n
queries to the database, one for each query term ti, and
compute the df value for each term. Note that the PubMed
eUtils, which we use in our experiments, have a method to
directly return the number of results (df) for a query. 2) We
can use estimates of the idf (inverse df) values by using some
other database with similar content (for example, using the
Google Web 1T 5-gram collection5).
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The more challenging part is the estimation of the tf
values. We need to estimate the value of tf for each query
term and for each document, that is, a total of n� jDj
values. This is rather unrealistic without having direct
access to the underlying database. So, we adopt a query-
based probabilistic approach and we use the fact that term
frequencies (tf) tend to follow a Poisson distribution within
the documents of a database [17]. The more accurately we
know the parameters of the distribution, the better we can
estimate the document score distribution, and the better we
can estimate how many documents should be in the top-k
results but are still not retrieved.

One strategy for estimating the distribution parameter
values is to generate a static document sample from the
database and use this sample for our estimations. As we
will see, this strategy suffers from some shortcomings. So,
we present an alternative strategy as well, which relies on
the exploitation-exploration framework, and combines
sampling with actual query execution. We provide further
details on our sampling strategy in Section 5 and compare
the performance of the two approaches in Section 6.

Now, assuming that we know the score distribution for
Q of the documents, we can estimate the benefit that each
issued query will generate: we can estimate the distribution
of document scores (with respect to Q) for the documents
retrieved by a conjunctive query q. Therefore, we can
estimate the benefit of a query q, defined as the probability
that a randomly selected document from the answer of q
will have score higher than the k-th ranked score for Q
among the documents retrieved so far.

To achieve that, we create a priority queue with all
candidate queries q, ordered by expected benefit. We select
the query at the top of the priority queue, retrieve
documents, and based on the results we update the
expected benefits of the other queries. Then, we pick the
query with the next-highest expected benefit and so on. The
algorithm terminates when the benefit (i.e., probability of
retrieving a top-k document) drops below a user-specified
probability constant P . That is, the algorithm terminates
when every unseen result has probability less than P to be
in the top-k answer. Note that P is provided by a domain
expert to balance response time and accuracy, and hence
users do not have to worry about it in practice. In the next
sections we describe in detail our approach.

5 EXPLORATION AND EXPLOITATION OF THE

DATABASE CONTENTS THROUGH QUERYING

In this section, we describe the core of our approach. We
show how we can use selective querying to

1. Explore the database. get the necessary statistics to
estimate the parameters that our algorithms need; and

2. Exploit the database. retrieve documents that are
candidates for the top-k results of user query Q.

We will see how our scheme achieves both 1 and 2 in
parallel.

5.1 Initial Probabilistic Modeling of the Source

Our overall goal is to figure out during our querying
process, how many of the top-k relevant documents we
have retrieved and how many are still unretrieved in the

database. Unfortunately, we cannot be absolutely certain
about these numbers unless we retrieve and score all
documents: an expensive operation. Alternatively, we can
build a probabilistic model of score distributions and
examine, probabilistically, how many good documents are
still not retrieved. We describe our approach here.

It is generally accepted that the term frequencies of the
terms in a database tend to follow a Poisson distribution. In
other words, for a word t, the probability that a randomly
chosen document d from database D has term frequency r is

Prftfðt; dÞ ¼ rg ¼ expð�tÞ
r!

� ð�tÞr: ð2Þ

where �t is a word-specific parameter. Now, instead of

knowing the n� jDj tf values in the database, we only need

to estimate n values: the �t values for each of the n words in

the query Q.
Following this, the estimation of the score distribution is

reduced to the problem of estimating the distribution of a

sum (see (1)) of Poisson distributed variables. We know that

if X and Y are two independent random variables following

a Poisson distribution with parameters �x and �y, respec-

tively, then the sum X þ Y follows a Poisson distribution

with parameter �x þ �y. Therefore, in our case, the score

distribution will also be, approximately,6 a Poisson dis-

tribution with parameter

�sQ ¼
X
t2Q

�t � idfðtÞð Þ; ð3Þ

where we note that idfðtÞ ¼ ln jDjþ1
dfðt;DÞ according to (1). We

use the s superscript to denote the tf:idf parameter as

opposed to just the tf parameter.
This model implicitly assumes independence across

terms. The assumption of independence across terms is

admittedly not realistic, but used by many algorithms that

deal with text, including many IR relevance models e.g., tf/

idf and LM models, and many text classification algorithms.

The independence assumption also tends to work in

practice (see the work of Domingos and Pazzani [23] for a

theoretical justification) and contributes to the tractability of

our algorithms.
Now, given that we have a functional form for the score

distribution, we can estimate the number of documents in

the database that are expected to have scores higher than

the currently retrieved documents. Suppose that our

currently retrieved top-k documents have a cutoff score � .

(We can estimate the exact similarity value for these

documents since we have retrieved them locally.) We are

trying to estimate how many documents in the database

have score higher than �

jDocsðscore > �Þj ¼ jDj � Prfscore > �gÞ ð4Þ

¼ jDj � PrfPoið�sQÞ > �g ð5Þ
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¼ jDj � 1�
�ðb� þ 1c; �sQÞ

b�c!

� �
; ð6Þ

where �ða; xÞ ¼ ða� 1Þ!e�x
Pa�1

r¼0
xr

r! is the incomplete
Gamma function.

We now have an estimate for the number of documents
that have similarity above a given threshold � . Of course,
before proceeding further, we need to estimate the �t
parameters required to compute the �sQ parameter for the
score distribution. Next, in Section 5.2, we describe an
approach that relies on “static” query-based sampling [21].
Then, in Sections 5.3 and 5.4, we describe our approach that
simultaneously explores the database and retrieves as many
good documents as possible at the same time.

5.2 Summary-Based Estimation of Poisson
Parameters

One strategy for generating estimates for the � values is to
generate a static document sample from the database, and
then use the retrieved documents to generate the estimates.
For example, Callan et al. [21] generate a summary from the
database by sending random keyword queries and retriev-
ing 300 documents. (By random, we mean queries with any
word, not only queries with words from the issued user
query Q.)

Given such a document sample, we can measure the
tfðt; dÞ values for each term t and document d, and use the
maximum likelihood estimate (MLE) to compute estimates for
the �t values. To avoid zero estimates for terms that do not
appear in the sample, we use Laplace smoothing:7

b�MLE
t ¼ 1þ

PS
i¼1 tfðt; diÞ
S þ 1

: ð7Þ

This strategy tends to have a few shortcomings. First, the
estimates assume that query-based sampling is equivalent
to random sampling, an assumption that does not necessa-
rily hold [24]: there is a bias to retrieve more often longer
documents, or documents with higher priority in the
underlying ranking function (e.g., more recent documents
in date-based ranking). Second, the estimates for the terms
that were sent to the database as query probes are
significant overestimates of the real values as by definition
the retrieved documents contain only documents with the
submitted terms. Third, and more importantly, there is a
very significant data sparseness issue: many terms do not
appear in the retrieved document sample and their
estimates are simply the Laplacean-corrected values.

Next, we describe an alternative approach that compen-
sates for the data sparseness by retrieving document
samples through a sampling process customized to the
issued query Q (Section 5.3). Then, we show how to
compensate for the overestimates introduced by the very
nature of the query-based sampling (Section 5.4). As we will
see, this exploitation-biased strategy tends to be slightly
more expensive than the summary-based strategy (as it
generates customized document samples on the fly, instead
of having a static summary shared by all queries) but
generates results of superior quality.

5.3 Exploitation-Biased Query-Based Estimation of
Poisson Parameters

In the previous section, we have described a query strategy
in which we were sending random queries for sampling.
Now, we describe an approach in which the sampling
queries involve only the actual query words, biasing the
retrieval of documents toward beneficial documents. In
parallel, this query strategy avoids the issue of data
sparseness by generating estimates specifically for the query
at hand. (We describe later the exact query formulation
strategies.) However, such a query strategy generates biases
in the sampling, which affect the basic MLE estimation. So,
we show now how to compensate for these biases.

Suppose that we submit as query the word t that appears
in the user query Q. We need to estimate properly the
parameter �t. In this case, the results that we received back
are not a random sample, so we cannot use directly the
method described above. Instead, now all the returned
documents are guaranteed to contain the word t. That is, the
returned document results are a “conditional” random
sample, with the condition that tfðt; dÞ > 0. So, our
retrieved sample misses all the documents that do not
contain t. Therefore, our calculations need to account for
this fact. Hence, we estimate, given the retrieved documents
for query t, how many empty documents we would have
seen if we were performing random sampling.

Suppose that after submitting the query t, we retrieve and

process a set of S documents. For the word t we also know

its document frequency dfðtÞ in D. So there are dfðtÞ
documents in the database that contain t and jDj � dfðtÞ that

do not contain t. Therefore, for every document with t that

we retrieve from D, we expect to have jDj�dfðtÞdfðtÞ documents

without t (i.e., with tfðt; dÞ ¼ 0). So, we modify the

estimator from the previous section to account for the

unseen documents that do not contain t and the sample size

from S becomes S0 ¼ S þ jDj�dfðtÞdfðtÞ � S ¼
jDj
dfðtÞ � S. So, by chan-

ging the normalizing factor 1=S to 1=S0 in (7), we have:

b�MLE
t ¼ 1

S

XS
i¼1

dfðtÞ
jDj � tfðt; dÞ: ð8Þ

The key observation in (8) is that when we update the
MLE estimates for the term t using results from a query
that contains t, we should scale the estimates using the
dfðtÞ
jDj factor.

Below, in Procedure updateLambdaByMLE, we present the
algorithm to update the current �t estimations after a
conjunctive query q is submitted, which produces a set of Sq
results. S is the number of results retrieved so far by all
submitted conjunctive queries. Note that for simplicity we
use the notation �t instead of �MLE

t in the rest of the analysis.

Procedure updateLambdaByMLE(q)

1 Let Zq be the results set for q. It is Sq ¼ jZqj.
2 foreach t 2 Q do

3 if t 2 q then

4 �prevt  �prevt þ dfðtÞ
jDj � tfðt; ZqÞ

5 // �prevt is an extra variable we need to keep for

each t, given that �t stores the averaged value.

6 // tfðt; ZqÞ ¼
P

d2Zq tfðt; dÞ
7 end
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8 else if t 2 Q n q then

9 �prevt  �prevt þ tfðt; ZqÞ
10 end

11 �t  �prevt =S //S is the total number of results

retrieved so far by all queries

12 end

5.4 Query-Based Document Score Distribution

In the previous section, we described how to adjust the �t
estimates to compensate for the bias introduced through

query-based sampling. Given these estimates, we can

generate the distribution of similarity scores for the user-

submitted queryQ in the database. However, we are not going

to retrieve documents randomly from the database. Instead,

we submit a sequence of conjunctive queries trying to retrieve

the most highly similar documents. So, to identify which

queries will retrieve the most similar documents, we need to

estimate the score distribution for the query results for a given

query q, which is not necessarily the same as the original user

query Q. We now describe how to compute the score

distribution of the query results for any conjunctive query q.
In Section 5.1, we gave a functional form for the score

distribution, assuming that we get a randomized sample from
the database. However, when the documents that we
examine are retrieved by using a query q that contains some
of the terms in the original user-issued query Q, then the
retrieved document sample is biased: a conjunctive query
guarantees that the returned documents have tfðt; dÞ > 0
when t 2 q. In this case we have

Prftfðt; dÞ ¼ rjtfðt; dÞ > 0g ¼ Prftfðt; dÞ ¼ r; r > 0g
Prftfðt; dÞ > 0g

¼
expð�tÞ
r! � ð�tÞ

r

1� Prftfðt; dÞ ¼ 0g

¼
expð�tÞ
r! � ð�tÞ

r

1� expð�tÞ
:

ð9Þ

In other words, the new tf distribution is a Poisson

distribution with a normalizing factor 1
1�expð�tÞ . Therefore,

when we send a query q to the database, the document score

distribution (the score is always defined with respect to the

user query Q) follows the Poisson distribution with a

configuring parameter �sq

�sq ¼
X
t2q

�t
1� expð�tÞ

� idfðtÞ
� �

þ
X
t2Qnq

�t � idfðtÞð Þ; ð10Þ

which is different that the functional form depicted in (3).

Following the analysis from Section 5.1, the number of

documents in the results of a conjunctive query q, with score

above a threshold � are

jDocsðscore > �Þj ¼ Sq � Prfscore > �gÞ
¼ Sq � PrfPoið�sqÞ > �g

¼ Sq � 1�
�ðb� þ 1c; �sqÞ

b�c!

� �
:

ð11Þ

This analysis gives us the basis for formulating our

querying strategy, which we describe next.

5.5 Top-k Querying Algorithm

Above we presented the estimation for a general query-
based approach, without specifying how to select queries to
send. However, we know now the expected score distribu-
tion for each conjunctive query, and how these estimates are
updated every time that we retrieve a new document
(Procedure updateLambdaByMLE above).

Our querying strategy is as follows: We start by sending
all the terms of the query as a conjunctive query to the
database. This query is expected to retrieve the documents
with the highest scores. Obviously, if the query matches less
than k documents, we need to submit relaxed versions of
the query (e.g., remove one keyword—we describe below
how to select which query to submit). If we have more than
k results, we still need to compute the confidence that the
retrieved documents contain the correct top-k results. (Note
that a document with fewer query keywords may achieve
higher ranking according to an IR function.)

Since we do not have access to the complete database, we
cannot be absolutely certain that we retrieved all the “real”
top-k documents. Instead, we adopt a probabilistic ap-
proach, and we use an input parameter P which is the
probability that any unseen document belongs on the top-k
results is less than P. That is for all the (unseen) documents
d with relevance scoreðd;QÞ, we have

Prfscoreðd;QÞ > �g < P; ð12Þ

where as � we set the relevance score of the k-th highest
scoring document retrieved so far. (See (11) and (10) to see
how to compute the value Prfscoreðd;QÞ > �g. Notice that
we are trying to estimate the distribution of scores for the
user-submitted query Q, and we retrieve the documents by
sending a set of conjunctive queries qi that contain only a
subset of the terms from Q.)

Hence, at every step we compute the benefit of every
candidate query, which is Prfscore > �g, and is computed
as shown in Section 5.4. If for all candidate queries the benefit
is less than P, the algorithm terminates. Else, the query q
with the maximum benefit is submitted. Then the �t
parameters estimations are updated and the process repeats.

We maintain a priority queue with the expected benefit
of each query so we can select which query to issue next.
The main algorithm is shown in Procedure QueryExecution.

Procedure QueryExecution(k, Q, P)

1 Initialize:

2 - Add to priority queue PQ all combinations q of terms
of Q, that is, PQ has all candidate conjunctive queries;

PQ is ordered by the benefit prðqÞ of q

3 - Default �t parameters are assigned to each t 2 Q, and

accordingly initial benefits prðqÞ for each q 2 PQ are

computed;

4 - Create results array R with size k, where results are

ordered by score;

5 while PQ 6¼ ;do

6 q PQ:popðÞ
7 if prðqÞ < P and R contains k results then

8 break

9 end

10 else
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11 Zq  Fetch(q)

12 S  S þ Sq //S is the number of

documents retrieved so far.

Sq ¼ jZqj
13 Insert Zq into R //Zq and R are

merged into R

14 UpdateLambdaByMLE(q)
15 UpdatePQ (q)

16 end

17 end

18 return R

As mentioned in Section 4, a practical issue that we face is

that we may retrieve the same documents many times as we

issue the queries. From an estimation point of view, we

should always include such documents in the updating of

the estimates. Practically though we do not want to retrieve

the same documents multiple times so that we can save the

retrieval and processing cost. We can achieve this by either

adding negations of the previously issued queries in the

submitted query or by simply not retrieving documents with

document ids identical to previously retrieved ones. In our

querying technique we use the negation trick: The process is

as follows: We save the set of documents Zq for each past

query q, and then for a new query qnew, we do the following:

. Let L ¼ q1; . . . ; ql be the set of past queries for which
qnew � qi.

. Submit q0new ¼ qnew � q1; . . . ; ql, i.e., qnew augmented
by the negation of all previously submitted queries
(to avoid retrieving documents retrieved in the past).

. The result of qnew for our probabilistic analysis
purposes is Zqnew ¼ Zq0new [ Zq1

[ � � � [ Zql
Candidate queries lattice. The sequence q1; q2; . . . ; qv of

queries that the algorithm submits can be viewed as a prefix
of the queries lattice, shown in Fig. 1. Except for the most
selective, vanilla conjunctive query that returns the AND of
all terms (the top of the lattice), it is not clear which query is
going to be the “next most beneficial” (See Fig. 1). Identifying
which are the “most beneficial” (or “most selective”) queries
is part of our algorithm, as described above. Our algorithm
always executes a prefix of the lattice (the upper queries of a
cut are executed) because the parent always has higher
benefit prðqÞ than a child: the benefit increases monotonically
with the number of keywords. Two possible executions of a
user query are shown in Fig. 1. The execution of the algorithm
can be viewed as a cut going down the lattice. Hence, in the

priority queue we only need to keep the candidate queries

that are just below the current cut.

Procedure UpdatePQ(q)

1 foreach ðpr; qÞ in PQ do

2 �sq ¼
P

t2q F ð �t
1�expð�tÞ ; dfðtÞ; avdlÞ þP

t2Qnq F ð�t; dfðtÞ; avdlÞ
//according to Equation 10

3 prðqÞ  1� IGFð�; �sqÞ //IGF stands for

incomplete gamma function

4 end

Total versus block variants of the algorithm. In the

above description, the algorithm submits a query q at a time

and retrieves all its results. That is, the granularity is a

whole query. We refer to this variant as Total. Alternatively,

we could refine the granularity by only retrieving B results

at a time from the results of a query q if B < jZqj (like line 11

in Procedure QueryExecution). Then, the probabilities

are updated as usual and the rest of the query is placed

back to the priority queue. We refer to this variant as Block.

These variants are compared experimentally in Section 6 for

various block sizes B.

6 EXPERIMENTS

We experimentally evaluate the performance and quality of

the retrieval algorithms. We compare the Query-based

probability estimation strategy described in Section 5.4 to

the Summary-based estimation strategy of Section 5.2, and

also consider the Total versus Block variants of the top-k

querying algorithm of Section 5.5. For that, we compare the

following algorithm variants:

. Baseline. This algorithm submits the disjunction of all
query keywords to the database and retrieves all
matching results. Documents that do not match this
disjunctive query, and hence are not returned, are
guaranteed to have zero tf.idf score. Then this
algorithm computes the IR score for each document,
and returns the true top-k to the user. Therefore, this
algorithm is guaranteed to generate a perfect
ranking, at the expense of a significant cost of
downloading all documents before ranking them.

. Blind. This algorithm is a simplified version of the
Query-based algorithm. The Blind algorithm does
not use the accumulated statistics about the tf
frequency of the terms in the database. Instead m
Blind submits a “static” sequence of conjunctive
queries, based only on the global document frequen-
cies of the terms. Blind initially submits the
conjunction of all n terms. Next, the queries with
n� 1 terms are submitted, sending first the queries
that do not include the term with the highest
document frequency (i.e., do not include the term
with the low idf), and so on.

. Summary-based. Our “Total” algorithm with sum-
mary-based probability estimation of the �’s.

. Query-based. Our “Total” algorithm with query-
based probability estimation of the �’s.

. Block-based. Our “Block” algorithm with query-based
probability estimation of the �’s.
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Note that we do not show results for a Block variant with

summary-based estimation, because our experiments show

that the Block variant is worse than the Total variant, and
also that Summary-based is worse than Query-based

estimation.

6.1 Experimental Setup

6.1.1 Configuration

All experiments were run on a PC with a 2.5G Intel quad-

core processor with 4G RAM running Windows XP SP2.
The algorithms were implemented in Java.

6.1.2 Data Sets

We ran our algorithm on three real data sets shown in Table 2,

two “Local” and one “Remote.”
The first Local data set is the “PMC Open Access

Subset” (LocalPubMed)8 data set, which is a subset of
PubMed which comprises of 117,860 open-access articles,
with the full text available for download. All of the
documents are XML files. The second Local data set is
the TREC Disk 1-5 data set (LocalTREC)9, which comprises
of over three million articles from newspapers and
government agencies. We used Lucene10 to index every
article in the two Local data sets. Note that Lucene allows
IR ranking of the documents, but we assumed this feature
is not available in this experiment. Instead, we set Lucene
to return the documents ordered by date.

The Remote data set, which is more appropriate for this

paper’s motivation, is the whole PubMed, which can only

be remotely accessed through PubMed Web access utility

services (RemotePubMed).11 We only retrieve the abstracts of

the articles since the body of many articles is missing from
PubMed. Note that PubMed does not offer any form of

relevance-based ranking. All results are ranked by date.

For LocalPubMed, we picked 60 queries that have been

used as exercises to train bioinformatics information specia-

lists [8]. Then, we separated the queries into two sets of

30 queries each: “frequent” and “infrequent” based on the

number of results that they generated when evaluated on the

web interface of PubMed. Due to restrictions imposed by the

web interface of PubMed, we could only use the “infrequent”

queries with the Remote data set. This is the result of the

restrictions imposed by PubMed, which does not allow

massive downloads of documents over the web service

interface. Therefore, we could not fully evaluate and retrieve

all the returned documents for the “frequent” queries and,

hence, we could not generate the baseline against which to

evaluate the quality of the results. (We could use our

algorithms that retrieve significantly less documents, but

we would not be able to evaluate the results in terms of

quality.) For our LocalPubmed data set we use both frequent

and infrequent queries. For LocalTREC, we used 60 english

test questions from the TREC website12 as our queries. For

these queries our baseline is the relevance ranking provided

by the TREC relevance judgments. Tables 3 and 4 show a

sample of the queries submitted to the Local and Remote data

sets, respectively.

6.1.3 Quality Measure

We measure the quality of the algorithms as follows: we

first execute the Baseline algorithm to compute the optimal

top-k results. Then, we measure the quality of Query-based

and Block-based algorithms by comparing their top-k

search results to this optimal list generated by the Baseline

algorithm. We compare two top-k lists using the normalized

top-k Spearman’s Footrule metric [25].
Table 5 summarizes the parameters varied in our

experiments, along with their ranges.
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TABLE 3
Sample Queries from The LocalPubMed Data Set

TABLE 4
Sample Queries from the Remote Data Set

TABLE 5
System Parameters

TABLE 2
Data Set Detail

8. http://www.pubmedcentral.nih.gov/about/openftlist.html.
9. http://trec.nist.gov/data/test_coll.html.
10. http://lucene.apache.org/.
11. http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_

help.html. 12. http://trec.nist.gov/data/testq_eng.html.



6.2 Experiments on Local Data Sets

6.2.1 Varying P
First, we examine the effect of P in the performance of our

algorithms. P is the parameter that defines the confidence

that the returned results are close to the optimal. Smaller

values of P mean that the algorithms tries harder to

approximate the optimal list, while large values of P mean

that the algorithm can stop earlier, returning more rough

approximations of the optimal list.
In Figs. 2 and 3 we set the number of keywords to 3 and

fix k ¼ 50. For Block-based algorithm, we set the Block size

to 2,000. We vary P from 0.01 to 0.5. Figs. 2a and 3a show

that Summary-based, Query-based and Block-based fetch

fewer documents as P grows. We observe that Block-based

retrieves slightly fewer documents but submits more

conjunctive queries compared with Query-based (called

fetches in Figs. 2b and 3b). As expected, Summary-based

retrieves the least documents in most cases. (As discussed

in Section 5.2, the summary-based algorithm retrieves 300

documents for the initial document summary to generate

the estimates but we do not include this one-time cost in the

reported results.) Moveover, in Fig. 2b we see that for

P � 0:2, Query-based and Block-based coincide, because

the number of the documents Block-based fetches is less
than Block size B. The same phenomenon also happens in
Fig. 3b for P � 0:25.

Although the Summary-based algorithm is the most
efficient, we observed that the speed comes at the expense of
the quality of the results. In terms of quality, Figs. 4a and 4b
show that both Query-based and Block-based achieve
excellent Footrule values for P up to 0.3 (for LocalPubMed)
or 0.2 (for LocalTREC) while Summary-based is the worst in
all cases as expected: this is the result of the rough
probability estimates.

In the rest of this section, due to space constraints, we
only report the results for LocalPubMed, given that the
results of LocalTREC follow similar trends.

6.2.2 Varying k

Next, we set the number of keywords to 3,P ¼ 0:1, and vary k
from 1 to 100, as shown in Fig. 5. As displayed in Fig. 5a, the
number of fetched documents increases with k for Summary-
based, Block-based and Query-based, as expected: with small
kwe can easily retrieve “a few good documents” but when k
increases the task of locating all similar documents becomes
increasingly harder. Furthermore, observe that the number
of documents grows slowly from k ¼ 10 to k ¼ 100 but fast
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Fig. 2. LocalPubMed: Varying P. (a) Number of doc. versus P. (b) Number of fetches versus P. (c) Time versus P.

Fig. 3. LocalTREC: Varying P. (a) Number of doc. versus P. (b) Number of fetches versus P. (c) Time versus P.

Fig. 4. Footrule versus P. (a) LocalPubMed. (b) LocalTREC. (c) Remote.



from k ¼ 1 to k ¼ 10. The reason is that very few documents

have very high relevance score, as expected from the Poisson

distribution of the similarity scores, but after that the

similarity threshold does not change as drastically with k.

The observations for the number of documents naturally

carry for number of fetches in Fig. 5b. As shown in Fig. 5c, the

execution time of the four algorithms increases with k. For

Baseline, this is because it has to compute the top-k results

from all retrieved results. Query-based is slightly faster than

Block-based when k ¼ 10, because both algorithms fetch the

same number of documents when k ¼ 10 (Fig. 5a) but Query-

based needs fewer fetches. Summary-based is faster than

other three algorithms, because it performs fewer fetches and

retrieves fewer documents, as we explained above in the

“varying P” paragraph. The quality results are also similar:

As shown in Fig. 6a, Query-based has perfect accuracy

(coincides with the X-axis), whereas Block-based accuracy

decreases slightly as k increases. Summary-based is the most

efficient but again has the worst accuracy as measured by the

footrule distance.

6.2.3 Varying the Number of Keywords

Fig. 7 depicts the results for different number of keywords
for two local data sets. In this experiment we fix k ¼ 50 and
P ¼ 0:1. As shown in Fig. 7a, Query-based fetches slightly
more documents in most cases. An exception is
#keywords ¼ 5 where both Query-based and Block-based
retrieve about the same number of documents because each
executed conjunctive query has fewer results than the
Block-based size. (Note that conjunctive queries with more
keywords return fewer results.) As shown in Fig. 7b, the
number of fetches for all methods increases fast because the
number of keyword combinations grows exponentially with
the number of keywords.

In terms of quality, interestingly, as we see in Fig. 6c, the
performance of Summary-based degrades as the number of
keywords increases. The reason is that for more keywords,
the number of candidate conjunctive queries explodes and
hence the inaccurate parameter estimation of Summary-
based leads often to bad query choices. In contrast, we see
that the performance of the Block-based algorithm increases
with number of keywords, because the submitted conjunc-
tive queries become more selective and the correct top
results often appear in these very focused queries. Also note
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Fig. 7. LocaLPubMed: Varying number of keywords. (a) #Document versus #keyword. (b) #Fetch versus #keyword. (c) Time versus #keyword.

Fig. 6. Footrule versus k and #kwd. (a) LocalPubMed (fr versus k). (b) Remote (fr versus k). (c) LocalPubMed (fr versus #kwd). (d) Remote
(fr versus #kwd).

Fig. 5. LocalPubMed: Varying k. (a) Number of doc. versus k. (b) Number of fetch versus k. (c) Time versus k.



in the same figure that Query-based algorithm has perfect

quality (coincides with the X-axis).

6.2.4 Varying Block Size

In Table 6, we set the number of keywords to 3, k ¼ 50,

P ¼ 0:1, and we measure the performance of Block-based

algorithm by varying Block size B ¼ 100 to B ¼ 2;000. Note

that Query-based algorithm is equivalent to Block-based

when Block size is infinity. The number of fetched

documents increases with Block size, since Block-based

algorithm can stop earlier if Block-based size is smaller. As

expected, the number of fetches decreases as Block size

increases. The time of Block-based algorithm decreases with

increasing Block size, even though the number of retrieved

documents slightly increases. This is because of the over-

head incurred by each fetch, which includes the query

overhead and the additional tasks for each fetch, like

updating the estimated frequencies. In terms of quality, as

Block-based size increases the Footrule of Block-based

drops, because more results are retrieved, as expected.

6.2.5 Compare tf Estimations of Summary-Based

versus Query-Based

In the above experiments we showed that the quality of the
Summary-based variant is consistently worse than the
Query-based variants. The main reason is that Summary-
based does not estimates as accurately the � parameters,
which intuitively means that it does not estimates as
accurately the expected tfs of the query words. Given the
fact that LocalPubMed data set shares many aspects with
LocalTREC data set, here we just use LocalPubMed as our
testbed to verify this fact.

Fig. 8 shows a qualitative depiction for k ¼ 50 and
P ¼ 0:1, for the 3-keyword queries: genetic, disease
and treatment on the local data set. We compare the tf
estimations of the two methods to the correct values, which
are calculated offline by scanning the complete data set and
using the Maximum Likehood Estimation (MLE) (7). We see
that Query-based is consistently better than Summary-
based for the reasons explained in Section 5.2.

6.2.6 Evaluate Blind Algorithm

We compare the performance of Blind and Query-based
algorithms on LocalPubmed data set by varying P and k. The
results are shown in Figs. 9, 10 and 11. We note that for
P ¼ 0:5, the times of Blind and Query-based are very close
(See Fig. 9c), but Query-based has about 4 times better
quality, according to the Footrule (Fig. 11a). This shows that
Blind is clearly inferior to Query-based; this is why it was not
included in the previous graphs. Also note in Fig. 11b, the
Query-based has perfect quality (coincides with the X-axis).

6.3 Remote Data Set

Given the graphs of Section 6.2, we conclude that the
Query-based algorithm is generally better than Block-based
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Fig. 9. Blind Algorithm on LocalPubMed Data Set: Varying P. (a) Number of doc. versus P. (b) Number of fetch versus P. (c) Time versus P.

TABLE 6
Varying Block Size

Fig. 8. Estimation of tf versus #fetch (LocalPubMed). (a) #Fetch versus tf: disease. (b) #Fetch versus tf: genetic. (c) #Fetch versus tf:
treatment.
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Fig. 13. Remote Data Set: Varying k. (a) Number of documents versus k. (b) Number of fetch versus k. (c) Time versus k.

Fig. 14. Remote Data Set: Varying #keywords. (a) #Doc versus #keywords. (b) #Fetch versus#keywords. (c) Time versus #keywords.

Fig. 11. Quality Evaluation of Blind Algorithm: Footrule versus P and k. (a) Footrule versus P. (b) Footrule versus k.

Fig. 12. Remote Data Set: Varying P. (a) Number of doc. versus P. (b) Number of fetch versus P. (c) Time versus P.

Fig. 10. Blind Algorithm on LocalPubMed Data Set: Varying k. (a) Number of doc. versus k. (b) Number of fetch versus k. (c) Time versus k.



because for a slightly higher execution time, it leads to
considerable quality improvement. Hence, we only con-
sider Query-based and Summary-based in this section.

In Figs. 12, 13 and 14, we repeat the above experiments
on the Remote database for varying P, k and number of
keywords, respectively. Due to the characteristics of the
remote data set, which are the much larger size and the
slow query response times, we observe the following key
differences from the results on the Local data set.

As shown in Fig. 4c, the Footrule has much less variation
than in Fig. 4a because the number of retrieved documents
has much smaller variation with P. The reason for the latter
is that the queries we used in the Remote data set have
more infrequent keywords as we explain in Section 6.1.

Also, in Fig. 6b we see that the Footrule decreases with k,
in contrast to Fig. 6a where it was 0 for Query-based and
increasing for Block-based. The reason is that, as we see in
Fig. 13a, the number of retrieved documents increases
dramatically with k, which was not the case for the Local
data set (Fig. 5a). The reason for the latter fact is that the
Remote data set has much more documents. When
increasing the #keywords, in Figs. 6d and 6c, we observe
that all algorithms are stable or degrade, since the search
space increases. The only exception is the Block-based for
LocalPubMed, which improves because it reads a too small
number of documents for small #keywords (Fig. 7a).

6.4 Discussion

Generally, as we have seen in previously reported experi-
ments, the Summary-based variant is slightly faster than the
Query-based variant. On the other hand, Query-based is
more accurate since its estimation strategy is better. In this
section, we combine previous results to give a general picture
of two methods and show the time versus quality tradeoffs.
We use the results of 3-keyword queries for this analysis.

Fig. 15 illustrates the time and quality improvement of the
Query-based and Summary-based algorithms for the Local-
PubMed and Remote data sets. We see that Summary-based
has a very slight advantage in terms of execution time at the
expense of a considerable disadvantage in terms of quality.

7 CONCLUSIONS

We presented a framework and efficient algorithms to build
a ranking wrapper on top of a documents data source that
only serves Boolean keyword queries. Our algorithm

submits a minimal sequence of conjunctive queries instead
of a very expensive disjunctive one. Our comprehensive
experimental evaluation on the PubMed database shows
that we achieve order of magnitude improvement com-
pared to the baseline approach.
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