
SDLIP + STARTS = SDARTS
A Protocol and Toolkit for Metasearching

Noah Green
ngreen@cs.columbia.edu

Panagiotis G. Ipeirotis
pirot@cs.columbia.edu

Computer Science Dept.
Columbia University

Luis Gravano
gravano@cs.columbia.edu

ABSTRACT
In this paper we describe how we combined SDLIP and
STARTS, two complementary protocols for searching over
distributed document collections. The resulting protocol,
which we call SDARTS, is simple yet expressible enough to
enable building sophisticated metasearch engines. SDARTS
can be viewed as an instantiation of SDLIP with metasearch-
specific elements from STARTS. We also report on our ex-
perience building three SDARTS-compliant wrappers: for
locally available plain-text document collections, for locally
available XML document collections, and for external web-
accessible collections. These wrappers were developed to be
easily customizable for new collections. Our work was de-
veloped as part of Columbia University’s Digital Libraries
Initiative–Phase 2 (DLI2) project, which involves the de-
partments of Computer Science, Medical Informatics, and
Electrical Engineering, the Columbia University libraries,
and a large number of industrial partners. The main goal of
the project is to provide personalized access to a distributed
patient-care digital library.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering, Query Formu-
lation, Search Process, Selection Process ; H.3.5 [Informa-
tion Storage and Retrieval]: Online Information Ser-
vices—Data Sharing, Web-based Services ; H.3.7 [Informa-
tion Storage and Retrieval]: Digital Libraries; H.2.4
[Database Management]: Systems—Textual Databases,
Distributed Databases ; H.2.5 [Database Management]:
Systems—Heterogeneous Databases

1. INTRODUCTION
The information available in electronic form continues to

grow at an exponential rate and this trend is expected to
continue. Although traditional search engines like AltaVista

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’01,June 24-28, 2001, Roanoke, Virginia, USA.
Copyright 2001 ACM 1-58113-345-6/01/0006 ...$5.00.

can solve common information needs, they ignore the often-
valuable information that is “hidden” behind search inter-
faces, the so-called “hidden web.”

One way to access the information available in the hid-
den web is through metasearchers [12, 18, 24], which pro-
vide users with a unified searchable interface to query mul-
tiple databases simultaneously. A metasearcher performs
three main tasks. After receiving a query, it determines the
best databases to evaluate the query (database selection),
it translates the query in a suitable form for each database
(query translation), and finally it retrieves and merges the
results from the different sources (results merging) and re-
turns them to the user using a uniform interface.

Metasearching is a central component of the Digital Li-
braries Initiative–Phase 2 (DLI2) project at Columbia Uni-
versity, which involves the departments of Computer Sci-
ence, Medical Informatics, and Electrical Engineering, the
Columbia University libraries, and a large number of indus-
trial partners (e.g., IBM, GE, Lucent). The project is named
PERSIVAL (PErsonalized Retrieval and Summarization of
Image, Video, And Language resources) and its main goal is
to provide personalized access to a distributed patient-care
digital library. The information needs vary widely among
the users of the system. We have to provide access to
all kinds of collections, ranging from Internet sites with
consumer health information to the Columbia Presbyterian
Hospital information system, which stores patient-record in-
formation and other relevant resources. Metasearching is
further complicated by the different access methods used by
each source, which range from public CGI-based interfaces
to proprietary access methods used inside the Columbia
Presbyterian Hospital. Key features of the project are the
abilities to access all these distributed resources regardless
of whether they are available locally or over the Internet,
to fuse repetitive and conflicting information from multiple
relevant sources, and to present concisely the retrieved in-
formation. Exploiting such a variety of information sources
is a challenging task, which could benefit from information
sources supporting a common interface for searching and
metadata extraction.

Rather than defining yet another new protocol and inter-
face that distributed sources should support, we decided to
exploit existing efforts for our project. More specifically, we
built on two complementary protocols for distributed search,
namely SDLIP [20] and STARTS [11], and combined them
to define SDARTS (pronounced “ess-darts”), which is the
focus of this paper.

SDLIP (Simple Digital Library Interoperability Protocol)
is a protocol jointly developed by Stanford University, the
University of California at Berkeley and at Santa Barbara,
the San Diego Supercomputer Center, the California Digital
Library, and others. The SDLIP protocol defines a layered,
uniform interface to query and retrieve the results from each
searchable collection through a common interface. SDLIP
also supports an interface to access source metadata.

SDLIP is optimized for clients that know which source
they wish to access. In contrast, the focus of STARTS
(STAnford protocol proposal for Internet ReTrieval and Se-
arch) is on metasearching. A crucial component of STARTS
is the definition of the specific metadata that a source should
export to describe its contents. This metadata includes the
vocabulary (i.e., list of words) in the source, plus vocab-
ulary statistics (e.g., the number of documents containing
each word). These summaries of the source contents are
useful for the metasearchers’ database selection task.

SDLIP and STARTS complement each other naturally.
SDLIP has a flexible design that allows it to host different
query languages and metadata specifications. The major
parameter and return types of its methods are passed as
XML, and the DTDs for this XML allow for extensions and
instantiations of the protocol. Thus, SDLIP can easily host
the main components of the STARTS protocol. The result
of this combination is SDARTS, which can be regarded as
an instantiation of the SDLIP protocol with a specific query
language, and, more importantly, with the richer metadata
interface from STARTS, which is useful for metasearching.

To simplify making document collections compliant with
SDARTS, we have developed a software toolkit that is easily
configurable. This toolkit includes software to index locally
available collections of both plain-text and XML documents.
Also, to be able to wrap external collections over which we
do not have any control and which do not support SDARTS
natively, the toolkit includes a reference wrapper implemen-
tation that can be augmented for new external collections
with relatively small changes.

SDARTS and its associated software toolkit, which are
the focus of this paper, provide the necessary infrastructure
for metasearching and for incorporating collections into our
digital libraries project with minimal effort. In Section 2
we describe in detail the metasearching tasks and the chal-
lenges involved. In Sections 3 and 4 we describe STARTS
and SDLIP respectively, the two protocols on which we have
based SDARTS. The resulting protocol is described in Sec-
tion 5 and the toolkit and reference implementations are
presented in Section 6. Finally, Section 7 provides further
discussion of our overall experience.

2. METASEARCHING
As we briefly mentioned in the Introduction, metasearch-

ing mainly consists of three tasks: database selection, query
translation, and result merging.

• Database Selection: A metasearcher might have
hundreds or thousands of sources available for query-
ing. An alternative to broadcasting queries to every
source every time is to only send queries to “promis-
ing” sources. This alternative results not only in better
efficiency but in better effectiveness as well. Selecting
the best sources for a given query requires that the
metasearcher have some information about the con-

tents of the sources. Some database selection tech-
niques rely on human-generated descriptions of the
sources. More robust approaches rely on simple meta-
data about the contents of the sources like their vo-
cabulary (i.e., list of words) together with simple as-
sociated statistics. Research in this area includes [10,
13, 21, 12, 18, 24].

• Query Translation: Metasearchers send queries to
multiple different sources, which requires translating
the queries to the local query language and capabil-
ities supported at each source. Query translation is
facilitated if sources export metadata on their query
capabilities, on whether they support word stemming,
on the attributes or fields available for searching (e.g.,
author and title), etc. Research in this area includes [6,
7, 8].

• Result Merging: Sources typically use undisclosed
document ranking algorithms to answer user queries,
which makes the combination of query results coming
from multiple sources challenging. Furthermore, even
two collections that use the same ranking algorithm
might rate a common document quite differently de-
pending on the other documents present in each col-
lection. Result merging is facilitated if sources export
metadata on their contents and query results. Re-
search in this area includes [22, 5].

A metasearcher needs information about the underlying
collections to perform the tasks above successfully. Conse-
quently, there is a need for a layer on top of the information
sources that will mask source heterogeneity and export the
right metadata to metasearchers. One protocol that was de-
signed to solve exactly this problem is STARTS, which we
briefly review next.

3. STARTS: A PROTOCOL PROPOSAL TO
FACILITATE METASEARCHING

STARTS [11] is a protocol proposal that defines the infor-
mation that a source should export to facilitate metasearch-
ing. By standardizing on a common way of interacting with
clients and by defining what information a document source
should export, metasearching becomes a much easier task.
Of course, the exported information alone is not a panacea
and does not solve the metasearching problems, but at least
it can make these problems more tractable. Specifically,
STARTS defines the information that should be included in
the queries to the sources, the format of the query results,
and the metadata a source should export about its contents
and capabilities [11].

For historical reasons, the original STARTS specification
used Harvest’s SOIF format [3] to encode queries, results,
and metadata. Also, STARTS did not define explicitly how
the information is transported. For our project, we de-
fined an encoding of all the STARTS information in XML.
All STARTS queries, result sets, and metadata objects are
then represented as XML documents. This means that all
STARTS elements can be easily manipulated by available
XML technologies, such as XSL, SAX, etc. Additionally,
the transformation from one XML dialect to another can
be easily achieved using off-the-self tools, thus it is easy to
support other query languages by just adding a thin layer

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE starts:scontent-summary SYSTEM "http://www.cs.columbia.edu/~dli2test/dtd/starts.dtd">
<starts:scontent-summary

xmlns:starts="http://www.cs.columbia.edu/~dli2test/STARTS/"
version="Starts 1.0"
stemming="false"
stopwords="false"
case-sensitive="true"
fields="false"
numdocs="19997"

>
...

<starts:field-freq-info>
<starts:field type-set="basic1" name="body-of-text"/>
<starts:term>

<starts:value>algorithm</starts:value>
</starts:term>
<starts:term-freq>75</starts:term-freq>
<starts:doc-freq>34</starts:doc-freq>

...

Figure 1: A small fraction of a STARTS metadata object for a document collection.

that translates the query format of another query language
to STARTS. Another strong reason to transform STARTS
to XML format is that SDLIP, the protocol that we review
next, uses XML to encode information, so this transforma-
tion makes combining the two protocols easier. We refer to
the “XMLized” STARTS version as STARTS XML.

Figure 1 shows part of the metadata object that summa-
rizes the contents of the “20 Newsgroups” document col-
lection [2], which is frequently used in the machine learning
community. This collection consists of 19,997 articles posted
to 20 newsgroups. 34 of these articles contain the term “al-
gorithm” in their body, as the metadata record in the figure
indicates. Also, the record shows that this term appears
75 times over these 34 articles. 1 A metasearcher can use
these content summaries to select what sources to send a
given query (i.e., for database selection). More specifically,
a metasearcher can estimate the number of matches that a
given query will produce at each source. As a simple ex-
ample, given a query on “algorithm” a metasearcher might
conclude that it does need to contact a source with very
few or no documents containing that word, as reported in
the corresponding STARTS content summary for the source.
(See [12, 18, 24] for research on how to exploit this type of
information for database selection.)

4. SDLIP: SIMPLE DIGITAL LIBRARY IN-
TEROPERABILITY PROTOCOL

SDLIP [20] is a layered protocol that defines simple inter-
faces for interoperability between information sources. Its
designers define it as “search middleware,” lighter and eas-
ier to use for web-related applications than standard mid-
dleware protocols like Z39.50 [1].

The main purpose of SDLIP is to provide uniform in-
terfaces to information sources for querying and retrieving
results, and taking care of the transport of the data across
the network. SDLIP defines the interfaces that a source or
a wrapper of a source should implement so that it can be

1Although XML is quite verbose to describe these statistics,
we should note that these XML objects can be compressed
effectively [16], and this compression can take place before
a potential transmission to a client.

Library
Service
Proxy

Information
Client

Simple Digital Libraries
Interoperability Protocol

Network
Boundary

Subcollections

"External"
Information
Source 1

"External"
Information
Source 2

External Protocols

Figure 2: The role of SDLIP in a digital library
architecture with autonomous sources and wrappers
(taken from [20]).

accessed by an SDLIP-enabled client. An implementation
of the SDLIP interfaces is called a Library Service Proxy
(LSP), and functions as a lower-level wrapper around one or
more underlying collections. Figure 2, borrowed from [20],
depicts the role of SDLIP in a digital library architecture.
LSPs mask access differences among the information sources
in the digital library, and present these sources to clients
through a uniform interface. Additionally, SDLIP places
one more layer above the LSP, namely network transport,
via HTTP/DASL or CORBA, to define exactly how the
servers and the clients should communicate with each other.
The SDLIP protocol supports both a stateful and a stateless
mode of operation. Just as STARTS is a stateless protocol,
we decided to use only the stateless version of SDLIP in
our project. Often web search over distributed collections
does not justify the added complexity of supporting stateful
protocols.

In a typical deployment of SDLIP, the LSP is a wrapper
that knows how to interact with the underlying collections
and exports a uniform SDLIP interface. The LSP interface
is divided into three parts: the search interface, the results

interface, and the metadata interface. The search interface
defines the operations for submitting a search request to an
LSP. The result interface allows clients to access the result
of a search. Finally, the metadata interface allows clients to
question a library service proxy about its capabilities and
contents. For each interface, SDLIP supports, by design, a
limited set of operations. This design decision is based on
the observation that the SDLIP interfaces can be enhanced
as needed through inheritance.

While inheritance is a useful tool for extending the SDLIP
interfaces, there is another mechanism for extending the pro-
tocol’s capabilities. The methods of the three interfaces
described above are designed to pass XML documents as
their major parameter and return types. The conditions
for an SDLIP search, for example, would be specified not by
primitive or object-based parameters, but rather as an XML
“property sheet” of search parameters. SDLIP’s grammar
for this XML is extensible, making it easy to host addi-
tional metasearching-related features within SDLIP simply
as some dialect of XML.

As mentioned above, SDLIP is optimized for clients that
know which source they wish to access. In contrast, STARTS
specifies, among other things, the metadata that sources
should export for metasearching. This makes merging these
two complementary protocols desirable. More specifically,
we describe next how we instantiate the SDLIP interfaces
with STARTS XML to obtain an expressive protocol for ef-
fective metasearching.

5. THE SDARTS PROTOCOL
In this section, we describe how we combined SDLIP and

STARTS XML into the SDARTS protocol. Section 5.1 out-
lines our rationale, while Section 5.2 gives an overview of
SDARTS.

5.1 SDARTS Design Rationale
SDARTS combines SDLIP and STARTS XML into an ex-

pressive protocol for distributed search. We now discuss
our choice of these two existing protocols as the basis for
SDARTS.

Our decision to adopt SDLIP was influenced by the fact
that SDLIP is already in use by other DLI2 projects around
the United States, and the ability to interoperate with re-
sources made available by other digital libraries efforts is of
course attractive. Additionally, the fact that there are al-
ready implementations that allow SDLIP clients to access
the contents of sources supporting alternative protocols like
Z39.50 [1] (but not vice versa) was another important fac-
tor in our choice of SDLIP as our “middleware” architecture.
(Other emerging related efforts, notably the “Open Archives
Initiative” [19], were still under development and not in sta-
ble form when we developed SDARTS.) Finally, we believe
that the agreement on common interoperability protocols is
a major factor in the success of efforts like the DLI2 projects.

At the same time, STARTS specifically describes the in-
formation that should be exchanged between sources and a
metasearcher. STARTS includes support to plug in other
attribute sets for searching like the Dublin Core [23] and
Z39.50’s Bib-1 [1] attribute sets. In fact, STARTS built on
these efforts and already supports some of their most useful
features. Additionally, STARTS specifies the metadata that
sources should export for effective metasearching. Other
protocols that define related metadata are the GILS Z39.50

profile [9] and Z39.50’s Exp-1 [1] attribute sets. Again,
STARTS built on these protocols. In particular, STARTS
defines that the sources should export vocabulary frequency
information (Section 3). SDLIP does not specify this kind
of metadata, which is useful for metasearching. However,
SDLIP is designed in such a way that it can easily incor-
porate additional capabilities, which can be exploited by
clients that are aware of them. Thus, it is natural to enrich
SDLIP with the STARTS components.

We standardized on STARTS XML as the XML “dialect”
for SDLIP to exchange the extra information not included
in the original version of SDLIP. SDARTS follows all of
SDLIP’s original DTDs, which include placeholders that
can be exploited to include the necessary STARTS XML
objects (e.g., the getPropertyInfo() method in SDLIP’s
metadata interface returns the <propList> element that can
be used for this purpose). Since the vocabulary statistics for
a source might be large, and given that a client other than
a metasearcher might not need them, SDARTS returns only
the URL where the content summary resides as part of the
metadata for a source. Then, a metasearcher can download
the summary outside of SDARTS with the given URL.

By standardizing on one XML format for SDLIP, we have
created an architecture where an LSP is divided into two
pieces: a standardized front-end that never needs to change,
because it only has to deal with one dialect of XML, and
an abstract back-end, which is implemented for specific un-
derlying collection types. Thus, a programmer would need
to write only this back-end implementation. Furthermore,
this standardization and predictability of the back-end LSP
makes it easier for us to create configurable reference imple-
mentations of the wrappers for frequently occurring collec-
tion types, at the expense, of course, of reduced flexibility.

Another factor that influenced our decisions was our inten-
tion to design a software design kit (SDK) for developers to
create SDARTS-compliant wrappers. The main design goal
was ease of implementation. To be sure, we wanted any pro-
grammer to be able to implement our standard wrapper in-
terface from scratch, and create custom wrappers fine-tuned
to their underlying collections. But in addition, we wanted
to create reference implementations for some common collec-
tion types. Moreover, we wanted these implementations to
be adjustable without any additional writing of code when-
ever possible. Thus, SDARTS includes a toolkit with refer-
ence implementations of wrappers for frequent types of col-
lections. These wrappers are all configurable with text files.
These files tell our wrappers things like how to index the
documents in a locally available collection, how to transform
queries into forms that external collections can understand,
and how to translate results passed from collections. Once
again, we chose XML as the format for these files. Later, in
Section 6 we focus on the various reference implementations,
and the pros and cons of our configuration-driven approach.

5.2 Overall SDARTS Architecture
Figure 3 shows the final SDARTS architecture, as it would

be used over the Internet to make one wrapped collection
available. The client layer is on the left side of the diagram,
and the wrapped collection is on the right side.

In the diagram, we see two possible clients: a standard
SDLIP client, since SDARTS uses the SDLIP interfaces and
transport layer, and the SDARTSBean, a client component
that we developed that simplifies access to SDARTS and en-

InternetInternet BackEndLSP
SDARTS

Bean

Client
Program

Existing
SDLIP
Client

STARTS XML
over HTTP/DASL

STARTS XML

LSPObjects

Native Protocol/
Search Engine

FrontEnd
LSP

S

M

Figure 3: The use of the architectural components
of SDARTS to query an SDLIP-compatible database
over the Internet. (The “S” and “M” stand for
SDLIP’s “Search” and “Source Metadata” inter-
faces, respectively.)

hances SDLIP with the metadata information that can be
used by metasearchers. For simplicity, we chose to use the
HTTP/DASL protocol as transport layer and not to imple-
ment at this point the support for CORBA. In the diagram
we show both prospective clients using the HTTP/DASL
protocol for the communication. All messages passing be-
tween the clients and the top level of SDARTS are format-
ted in STARTS XML. As we discussed earlier, the benefits
of this are:

• XML is an easily parsed and transformed language
standard, and is ideal for client use; and

• Lower layers of SDARTS need only be implemented
once, as the incoming XML protocol is already known.

The top layer of the server side is a Java component called
the FrontEndLSP. This component implements the major
SDLIP interfaces, and is for all intents and purposes an
SDLIP LSP. The FrontEndLSP parses the incoming STARTS
XML requests using the Simple API for XML (SAX), and
generates various search objects that implement the com-
mon LSPObject interface.

These LSPObjects are just data containers; basically, they
are objectified STARTS XML documents, and are passed
to the lower layer. They represent the requests and re-
sponses that the system fulfills and produces. By standard-
izing on this object representation of the various SDARTS
operations, we simplify the task for the prospective wrap-
per implementors. They will not need to parse any in-
coming XML or generate any outgoing XML, but instead
they can just examine and create LSPObjects, whose sim-
ple interfaces make it easy to understand queries and gen-
erate results. Thus, the wrapper programmer needs only
to implement the abstract BackEndLSP interface, which ac-
cepts and returns LSPObjects. This implementation reads
LSPObjects that come from the FrontEndLSP, and gener-
ates other LSPObjects that it returns. Each LSPObject al-
ready knows how to represent itself as STARTS XML, so it
is easy for the front-end to transform them into responses
to a SDARTS client. In short, back-end developers do not
really need to know anything about STARTS, SDLIP, or

even XML in general. All they need to understand is what
the back-end interface supports, what the LSPObjects are
and how to read them, and, of course, how to handle the
collection they are wrapping.

An alternative design choice for SDARTS could have used
the Document Object Model (DOM), which provides an ex-
isting framework and implementation for converting XML
documents into Java objects. While DOM does simplify the
task of objectifying XML documents, it does so at the ex-
pense of specificity and performance. DOM objects have
very generic interfaces. For example, if the BackEndLSP ac-
cepted DOM objects instead of LSPObjects, then wrapper
programmers would have to remember what to expect when
calling each of the generic getter methods on the DOM ob-
jects. They might have to make redundant calls in order to
ascertain what data was actually available, and would cer-
tainly have to memorize what data types to expect. There
would be much casting overhead during each interaction. In
short, they would have to perform significant extra work to
extract the necessary query data. As mentioned above, our
overriding design goal was that it be relatively simple to im-
plement the wrappers. As such, we opted to specify our own
object representation of the XML documents, LSPObjects,
with well-known method names and well-understood types.

The decisions made during the development of SDARTS
resulted in a protocol that made the implementation of wrap-
pers a relative easy task, even for a moderately experienced
programmer. However, our goal was to facilitate even fur-
ther the development of wrappers for existing collections.
For this reason we have created reference implementations
of wrappers for common collection types that can be easily
configured, as described next.

6. CONFIGURABLE REFERENCE IMPLE-
MENTATIONS

In this section, we describe the reference wrapper imple-
mentations that we developed for common collection types.
To wrap a collection, we can use the closest of these im-
plementations and adapt it by defining simple XML-based
files. Currently, we have three reference wrapper implemen-
tations:

• A wrapper for unindexed text documents residing in a
local file system (Section 6.1);

• A wrapper for unindexed XML documents residing in
a local file system (Section 6.2); and

• A wrapper for an external indexed collection fronted
by a form-based WWW/CGI interface (Section 6.3).

6.1 TextBackEndLSP: Unindexed Text Document
Collections

The first wrapper we created is for locally available col-
lections of documents with no index over them. For this,
we leveraged an open-source Java search engine known as
Lucene [17] to index and search such collections. In its in-
ternal architecture, our wrapper hides the Lucene engine
behind a more abstract interface, so in practice other search
engines could be used with this wrapper.

Figure 4 shows the basic structure of the wrapper, known
as TextBackEndLSP. The back-end administrator needs only
write one file: doc config.xml. This tells the wrapper where

doc_
config
.xml

meta_
attributes

.xml

content_
summary
.xml

index

TextBackEndLSP

Lucene
Search
Engine

Unindexed
Text
Documents

Figure 4: Structure of the TextBackEndLSP wrapper.

<doc-config re-index="true">

<path>/home/dli2test/collections/doc1/20groups </path>

<linkage-prefix>http://localhost/20groups</linkage-prefix>

<stop-words>

<word>the</word>

<word>a</word>

</stop-words>

<field-descriptor name="author">

<start>

<regexp>^From: </regexp>

</start>

<end>

<regexp>$</regexp>

</end>

</field-descriptor >

</doc-config>

Figure 5: Portion of the contents of doc config.xml.

the documents are, what fields should be indexed, and where
to find the fields in the documents. TextBackEndLSP uses
the file to index the documents offline, so that when the
SDARTS server is available, the collection is fully searchable.
During indexing, the wrapper also generates the two meta-
data files, meta attributes.xml and content summary.xml;
these contain the standard STARTS metadata, and can be
returned in response to requests from the front-end. The
file doc config.xml is itself in a very simple XML format
(see Figure 5). An important point is the use of regular
expressions to tell the wrapper how to extract the values
associated with each searchable field like author or title. In
our sample file, the author field of a document is found on
a line that starts with the string “From:”.

This format is simple enough for a non-programmer to
edit by hand, and a GUI administration tool can certainly
easily generate it. It has some limitations; it assumes that
all documents in the collection are in the same format. In
addition, field data must be contiguous within a document.
This is especially a problem with XML documents, so we
created a separate wrapper, described below, to deal with
them.

6.2 XMLBackEndLSP: Unindexed XML Document
Collections

This wrapper for documents formatted in XML is quite
similar to its plain-text counterpart; the key difference is
that to index collections of XML documents a slightly more
complicated configuration file is needed. Here, the configu-
ration file doc config.xml only tells the wrapper where to
find the documents. The administrator must then write a

index
Lucene
Search
Engine

Apache
Xalan XSL
Processor

Unindexed
XML
Documents

doc_
style
.xsl

starts_intermediate
SAX Events

Figure 6: Indexing XML documents for the Lucene
search engine, using an XSLT stylesheet to locate
the fields in each document.

second file, doc style.xsl, which is an XSL Transforma-
tions (XSLT) stylesheet. It is this second file that tells the
wrapper how to find the fields in the documents during the
indexing process.

Figure 6 illustrates the indexing process in this wrapper.
The doc style.xsl file should be written to transform an
XML document from the collection into a new XML for-
mat we devised called starts intermediate. This is a sim-
ple subset of STARTS XML that describes STARTS doc-
uments. The transformed document is never materialized;
rather, the transformation emits SAX events that ultimately
tell the search engine indexer how to index the document.
Like the text document wrapper, this process assumes that
all documents in the collection are structured similarly.

When we set out to devise this and the final wrapper, we
believed that writing XSLT stylesheets was easier than de-
signing and implementing Java objects; while this is true,
XSLT is still non-trivial. In Section 7, we assess XSLT’s
suitability for making wrappers easy to implement and con-
figure.

6.3 WWWBackEndLSP: WWW/CGI Collections
WWWBackEndLSP is the most complex of the three wrappers.

It is intended for autonomous, remote collections fronted
by HTML forms and CGI scripts. Such collections include
search engines such as Google, AltaVista, and thousands of
other web-based searchable collections.

There are two major issues in creating a generic, config-
urable wrapper for such collections:

• How to convert a query into the proper CGI-BIN in-
vocation onto a search engine; and

• How to interpret the HTML results returned by such
an engine.

For metasearching, there is also the question of how to ex-
tract metadata from such engines, since most search engines
do not provide any such metadata. Our current implemen-
tation relies on the wrapper administrator to write a meta-
data file (the meta attributes.xml file) with the informa-
tion specified by STARTS XML. In the future, we could
automatically generate at least an approximation of the con-
tent summaries by using the results of research on metadata
extraction from “uncooperative” sources [4, 15].

We decided that the best way to make this wrapper con-
figurable without additional Java coding was through the
use of XSLT stylesheets and the starts intermediate for-
mat. We extended it to be able to describe CGI invocations

HTTPRequest
Apache

Xalan XSL
Processor

STARTS
XML
<squery>

www_
query
.xsl

starts_intermediate
SAX Events

Figure 7: Converting a STARTS query to a CGI
request using XSLT.

LSPResults
Apache

Xalan XSL
Processor

Returned
HTML
Results

www_
results
.xsl

starts_intermediate
SAX Events

HTML Tidy

Figure 8: Converting HTML search engine results
to a SDARTS object with XSLT.

using an element called <script>, which consists of a URL,
a method (GET or POST), and a set of name/value pairs
that are the script’s parameters.

Figure 7 shows how the query is assembled. The adminis-
trator first writes an XSLT stylesheet called www query.xsl.
This stylesheet is used to map the transformation between a
a STARTS <squery> and starts intermediate <script>.
The result of this transformation is output as SAX events,
which ultimately build up a Java embodiment of the CGI
invocation called HTTPRequest.

Figure 8 shows how the HTML results page returned by
the wrapped search engine is parsed. While HTML is a close
relative of XML, it is not as well-structured as XML. Hence,
it cannot be truly classified as XML, and thus cannot be
processed by XSLT. Thus we must first pass it through the
HTML Tidy utility [14], which converts the page into well-
formed XML (similar but not identical to XHTML). This
XML is then transformed using an XSLT stylesheet called
www results.xsl, once again written by the administrator.
The stylesheet maps the transformation between the XML-
formatted results and a starts intermediate result set.
Once again, the transformation is output as SAX events,
which ultimately build up an LSPResults object, which is
the standard LSPObject subclass returned by a BackEndLSP

in response to a search query.
Our wrapper is designed to work with search engines that

return HTML pages of result records that may have a “more”
or “next” button located on them, designed to retrieve fur-
ther results. This is typical of most, if not all, web-based
search engines. The stylesheet can also be written to detect
such a button on the search results page, and convert it into
a starts intermediate <script> element. The wrapper
will then understand that there are more result pages, and

will invoke the <script> as an additional CGI call. This al-
lows the wrapper to automatically page through a complete
set of results from a search engine query.

7. FURTHER DISCUSSION AND CONCLU-
SIONS

In this paper we have described SDARTS, a protocol that
is an instantiation of the SDLIP protocol with metasearch-
specific elements from the STARTS protocol. We also re-
ported on a toolkit with wrappers for a variety of heteroge-
neous collections. All the details (including the source code
and the complete documentation of the various SDARTS
wrappers that we have implemented) are publicly available
at http://www.cs.columbia.edu/~dli2test/.

The reference SDARTS wrappers that we have imple-
mented so far are meant to be customized for new collec-
tions. To build a wrapper for a new local text collection
residing in a local file system, it is straightforward to write
the required doc config.xml file (Figure 5). In contrast,
we have found that building wrappers for web-based collec-
tions and for local XML document collections by writing
XSLT stylesheets can sometimes be more involved. XSLT
turns out to be quite difficult to master. It is declarative,
template-driven, and rule-based, which makes it quite dif-
ferent from the procedural and object-oriented languages
most programmers are used to. In addition, writing these
stylesheets requires a wide sampling of possible input doc-
uments. Many test searches on a web-based collection, for
example, should be performed and saved before a wrapper
administrator can write a www results.xsl file for it.

The challenge of writing any configuration-driven system
is to make it configurable but not so overly complex that
writing the necessary configuration files is equivalent to writ-
ing a new piece of software. We think that using XSLT in
our wrappers meets this challenge, although this is still not
a perfect solution. In the end, in our opinion it is still easier
than writing and re-writing Java code for parsing HTML
or XML, extracting results, and formatting them. Further-
more, it would be easier to create a tool that could gener-
ate XSLT stylesheets than it would be to create one that
could generate the Java code embodying the same trans-
formation logic. XSLT is an area of active research and
development, with a new generation of automatic stylesheet
generators, many of them open source, already on the hori-
zon. Therefore, we hope that future versions of our system
might include GUI-based wrapper development tools that
could simplify the generation of the configuration files.

8. ACKNOWLEDGEMENTS
We thank Sergey Melnik and Andreas Paepcke, from the

Stanford Digital Libraries project, for their invaluable help
and comments. We also thank Sergey Sigelman and Mike
Medric for their contributions to the development and de-
bugging of SDARTS code. Panagiotis Ipeirotis is partially
supported by Empeirikeio Foundation and he thanks the
Trustees of Empeirikeio Foundation for their support.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-98-17434.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

9. REFERENCES
[1] International Standard Maintenance Agency. Z39.50

Maintenance Agency Page. Accessible at
http://www.loc.gov/z3950/agency/. ISMA, 2000.

[2] C. Blake and C. Merz. University of California at
Irvine repository of machine learning databases.
Accessible at http://kdd.ics.uci.edu/.

[3] C. M. Bowman, P. B. Danzig, D. R. Hardy,
U. Manber, and M. F. Schwartz. Harvest: A scalable,
customizable discovery and access system. Technical
Report CU-CS-732-94, Department of Computer
Science, University of Colorado-Boulder, Aug. 1994.

[4] J. P. Callan, M. Connell, and A. Du. Automatic
discovery of language models for text databases. In
SIGMOD 1999, Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 479–490. ACM Press, 1999.

[5] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
SIGIR’95, Proceedings of the 18th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
21–28. ACM Press, 1995.

[6] J. Calmet, S. Jekutsch, and J. Schü. A generic
query-translation framework for a mediator
architecture. In Proceedings of the Thirteenth
International Conference on Data Engineering, pages
434–443. IEEE Computer Society, 1997.

[7] C.-C. K. Chang and H. Garcia-Molina. Mind your
vocabulary: Query mapping across heterogeneous
information sources. In SIGMOD 1999, Proceedings of
the ACM SIGMOD International Conference on
Management of Data, pages 335–346. ACM Press,
1999.

[8] C.-C. K. Chang and H. Garcia-Molina. Approximate
query translation across heterogeneous information
sources. In VLDB 2000, Proceedings of the 26th
International Conference on Very Large Data Bases,
pages 566–577. Morgan Kaufmann, 2000.

[9] E. Christian. Application profile for the government
information locator service GILS, Version 2, Aug.
1997. Accessible at
http://www.usgs.gov/gils/prof v2.html.

[10] N. Craswell, P. Bailey, and D. Hawking. Server
selection on the World Wide Web. In Proceedings of
the Fifth ACM Conference on Digital Libraries, pages
37–46. ACM, 2000.

[11] L. Gravano, C.-C. K. Chang, H. Garćıa-Molina, and
A. Paepcke. STARTS: Stanford Proposal for Internet
Meta-Searching. In SIGMOD 1997, Proceedings of
ACM SIGMOD International Conference on
Management of Data, pages 207–218. ACM Press,
1997.

[12] L. Gravano, H. Garćıa-Molina, and A. Tomasic.
GlOSS: Text-source discovery over the Internet. ACM
Transactions on Database Systems, 24(2):229–264,
June 1999.

[13] D. Hawking and P. B. Thistlewaite. Methods for
information server selection. ACM Transactions on
Information Systems, 17(1):40–76, Jan. 1999.

[14] HTML Tidy. Accessible at
http://www.w3.org/People/Raggett/tidy/, 2000.

[15] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe,
count, and classify: Categorizing hidden-web
databases. In SIGMOD 2001, Proceedings of the ACM
SIGMOD International Conference on Management of
Data, 2001.

[16] H. Liefke and D. Suciu. XMILL: An efficient
compressor for XML data. In SIGMOD 2000,
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 153–164.
ACM, 2000.

[17] The Lucene Search Engine. Accessible at
http://www.lucene.com/, 2000.

[18] W. Meng, K.-L. Liu, C. T. Yu, X. Wang, Y. Chang,
and N. Rishe. Determining text databases to search in
the Internet. In VLDB’98, Proceedings of the 24th
International Conference on Very Large Data Bases,
pages 14–25. Morgan Kaufmann, 1998.

[19] Open Archives Initiative. Accessible at
http://www.openarchives.org/, 2000.

[20] A. Paepcke, R. Brandriff, G. Janee, R. Larson,
B. Ludaescher, S. Melnik, and S. Raghavan. Search
middleware and the Simple Digital Library
Interoperability Protocol. D-Lib Magazine, 6(3), 2000.

[21] A. Sugiura and O. Etzioni. Query routing for web
search engines: Architecture and experiments. In
Proceedings of the Ninth International World-Wide
Web Conference. Foretec Seminars, Inc., 2000.

[22] E. M. Voorhees, N. K. Gupta, and B. Johnson-Laird.
The collection fusion problem. In Overview of the
Third Text REtrieval Conference (TREC-3), pages
95–104. Department of Commerce, National Institute
of Standards and Technology, Mar. 1995.

[23] S. Weibel, J. Godby, E. Miller, and R. Daniel Jr.
OCLC/NCSA metadata workshop report, 1995.
Accessible at http://www.oclc.org:5047/oclc/-

research/publications/weibel/metadata/-

dublin core report.html.

[24] J. Xu and J. P. Callan. Effective retrieval with
distributed collections. In SIGIR’98: Proceedings of
the 21st Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, pages 112–120. ACM Press, 1998.

