
Ranked Queries over Sources with Boolean Query
Interfaces without Ranking Support

Vagelis Hristidis #1, Yuheng Hu #2, Panagiotis G. Ipeirotis ∗3

#School of Computing and Information Sciences, Florida International University
Miami, FL, USA

1vagelis@cis.fiu.edu
2yhu002@cis.fiu.edu

∗Department of Information, Operations, and Management Sciences; New York University
New York, NY, USA

3panos@stern.nyu.edu

Abstract— Many online or local data sources provide powerful
querying mechanisms but limited ranking capabilities. For in-
stance, PubMed allows users to submit highly expressive Boolean
keyword queries, but ranks the query results by date only.
However, a user would typically prefer a ranking by relevance,
measured by an Information Retrieval (IR) ranking function.
The naive approach would be to submit a disjunctive query
with all query keywords, retrieve the returned documents, and
then re-rank them. Unfortunately, such an operation would be
very expensive due to the large number of results returned by
disjunctive queries. In this paper we present algorithms that
return the top results for a query, ranked according to an
IR-style ranking function, while operating on top of a source
with a Boolean query interface with no ranking capabilities
(or a ranking capability of no interest to the end user). The
algorithms generate a series of conjunctive queries that return
only documents that are candidates for being highly ranked
according to a relevance metric. Our approach can also be
applied to other settings where the ranking is monotonic on a set
of factors (query keywords in IR) and the source query interface
is a Boolean expression of these factors. Our comprehensive
experimental evaluation on the PubMed database and TREC
dataset show that we achieve order of magnitude improvement
compared to the current baseline approaches.

I. INTRODUCTION

Many online or local data sources provide powerful query-

ing mechanisms but limited ranking capabilities. For instance,

PubMed allows users to submit Boolean keyword queries

on the biomedical publications database, but ranks the query

results by publication date only. Similarly, the US Patent and

Trademark Office (USPTO) allows Boolean keyword queries

or searching patents but only ranks by patent date. Further-

more, job search databases, like the job search of LinkedIn,

allow users to sort job listings by date or title (alphabetically),

but not by IR relevance of the job posting to the submitted

query. As a more recent example, the micro-blogging service

Twitter offers a highly expressive Boolean search interface but

ranks the results by date only. In most cases, these sources do

not allow downloading and indexing of data or the size of the

underlying database makes any comprehensive download [11],

[12] an expensive operation.

Often, the user prefers a ranking other than the default

(e.g., by date) provided by the source. For instance, a user

of the PubMed or USPTO Web sites may sometimes prefer a

ranking by relevance, measured by an Information Retrieval

(IR) ranking function. Given that traditional IR ranking func-

tions [14] like Okapi [15] and BM25 [13] implicitly assume

disjunctive (OR) semantics, the naive approach would be to

submit a disjunctive query with all query keywords, retrieve all

the returned documents, and then rank them according to the

relevance metric of choice. However, this would be very expen-

sive due to the large number of results returned by disjunctive

queries. For example, consider the query “immunodeficiency

virus structure”, an example query used to teach information

specialists how to search the PubMed database [5]. Executing

the corresponding disjunctive query “immunodeficiency OR

virus OR structure” on PubMed returns 1,451,446 publication

results. Downloading and ranking them is infeasible for an

interactive query system, even if the source is on the local

network. The problem becomes even more critical if we use

the public web services provided by PubMed for programmatic

(API) access over the web. Given the large overhead incurred

when retrieving publications, PubMed imposes quotas on

the amount of data an application can retrieve per minute,

rendering infeasible any attempt to download large number

of documents.

To overcome such problems, in this paper we present

algorithms to compute the top results for an IR ranked query,

over a source with a Boolean query interface but without

any ranking capabilities (or with a ranking function that is

generally uncorrelated to the user’s ranking e.g., by date).

A key idea behind our technique is to use a probabilistic

modeling approach, and estimate the distribution of document

scores that are expected to be returned by the database. Hence,

we can estimate what are the minimum cutoff scores for

including a document in the list of highly ranked documents.

To achieve this result over a database that allows only query-

based access of documents, we generate a querying strategy

that submits a minimal sequence of conjunctive queries to the

source. (Note that conjunctive queries are cheaper since they

return significantly fewer results than disjunctive ones.) After

every submitted conjunctive query we update the estimated

probability distributions of the query keywords in the database

978-1-4244-5446-4/10/$26.00 © 2010 IEEE ICDE Conference 2010872

and decide whether the algorithm should terminate given

the user’s results confidence requirement or whether further

querying is necessary; in the latter case, our algorithm also

decides which is the best query to submit next. For instance,

for the above query “immunodeficiency virus structure”, the

algorithm may first execute “immunodeficiency AND virus

AND structure”, then “immunodeficiency AND structure” and

then terminate, after estimating that the returned documents

contain all the documents that would be highly ranked under

an IR-style ranking mechanism. As we will see, our work

fits into the “exploration vs. exploitation” paradigm [2], [9],

[10], since we iteratively explore the source by submitting

conjunctive queries to learn the probability distributions of

the keywords, and at the same time we exploit the returned

“document samples” to retrieve results for the user query. Our

approach can also be extended and applied to other settings

where the ranking is monotonic on a set of factors (query

keywords in IR) and the source query interface is a Boolean

expression of these factors.

II. RELATED WORK

Top-𝑘 queries Theobald et al. [16] describe a framework

for generating an approximate top-𝑘 answer, with some prob-

abilistic guarantees. In our work, we use the same idea; the

main difference is that we only have “random access” to the

underlying database (i.e., through querying), and no “sorted

access.” Ilyas et al. [7] provide a survey of the research on

top-𝑘 queries on relational databases.

Exploration vs. exploitation The idea of the exploita-

tion/exploration tradeoff [2], [9], [10] (also called the “multi-

armed bandit problem”) is to determine a strategy of sequential

execution of actions, each of which has a stochastic payoff.

While executing an action we get back some (uncertain) payoff,

and at the same time we get some information that allows us

to decrease the uncertainty of the payoff of future actions.

Deep Web Our work bears some similarities to the problem

of extracting data from the Deep Web [1] databases. For

example, Ntoulas et al. [12] attempt to download the contents

of a Deep Web database by issuing queries through a web form

interface. [3], [8] characterize databases by extracting a small

sample of documents that is then used to describe the contents

of the database. In the experimental section, we compare

against this “static sampling” alternative and demonstrate

the superiority of the dynamic sampling technique, which

dynamically generates estimates tailored to the query at hand.

III. PROBLEM DEFINITION

Query Model Consider a text database 𝐷 with documents

𝑑, . . . , 𝑑𝑚. The user submits a keyword query 𝑄 = {𝑡1...𝑡𝑛}
containing the terms 𝑡1...𝑡𝑛. The answer to the query is a list

of the top 𝑘 documents; the documents are ranked according to

a relevance score 𝑠𝑐𝑜𝑟𝑒(𝑄, 𝑑), which estimates the relevance

of a document 𝑑 to the query 𝑄.

The score of a document can be computed using any of

the the well studied tf.idf scoring functions like BM25 and

Okapi [13], [14], [15]. The key arguments of a tf.idf function

are the term frequency (tf), the document frequency (df) and

the document length (dl). The term frequency tf (𝑡, 𝑑) is the

number of times that the word 𝑡 appears in document 𝑑. The

document frequency df (𝑡,𝐷) is the number of documents in

𝐷 that contain 𝑡. Hence, score(𝑄, 𝑑) = 𝐹 (𝑡𝑓, 𝑑𝑓, 𝑑𝑙). At its

basic form, the tf.idf ranking function is:

𝑠𝑐𝑜𝑟𝑒(𝑄, 𝑑) =
∑

𝑡∈𝑄,𝑑

tf (𝑡, 𝑑) ⋅ ln ∣𝐷∣+ 1

df (𝑡,𝐷)
(1)

where ∣𝐷∣ = 𝑚 is the size of the database 𝐷. In our

experiments, we use the Okapi scoring function, although any

other tf.idf function could be used. For simplicity though we

use the basic tf.idf scoring function as the running example.

Data Source Model We assume that database 𝐷 is only

accessible through a Boolean query interface and we do not

have direct access to the underlying documents. The query

interface evaluates the Boolean query 𝑄 and returns the

documents ranked using a non-desirable ranking function, e.g.,

by date (as is the case for PubMed and USPTO).

For instance, if the user query is 𝑄=[anemia, diabetes,
sclerosis], then we can submit to the data source queries 𝑞1 =
[anemia AND diabetes AND sclerosis], 𝑞2 = [anemia AND
diabetes AND NOT sclerosis], 𝑞3 = [diabetes OR sclerosis],

and so on. The returned results are guaranteed to match the

Boolean conditions but the documents are not expected to be

ranked in any useful manner.

Objective We want to devise a scheme for retrieving from 𝐷
the top-𝑘 documents, ranked according to 𝐹 (𝑡𝑓, 𝑑𝑓, 𝑑𝑙). The

trivial solution is to send an extremely broad disjunctive query,

returning all documents that have a non-zero 𝐹 (𝑡𝑓, 𝑑𝑓, 𝑑𝑙)
score. Then, we can retrieve the documents, examine their

contents, and rerank them locally before presenting the results

to the user. Unfortunately, this is a very time-consuming solu-

tion. Therefore, our objective is to construct a query sequence

𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑣 of Boolean queries, that can be submitted to

the database, retrieve as few documents as possible, and still

contain all the documents that would be in the top-𝑘 results.

IV. OVERVIEW OF APPROACH

As mentioned above, our approach is based on choosing

the best sequence 𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑣 of Boolean queries to submit

to the data source, such that we retrieve the top-𝑘 ranked

documents for 𝑄. Of course, to select the best sequence of

queries, we need to know some statistics about the type of

documents retrieved by each query 𝑞𝑖. To get these statistics

we need to sample the database through query-based sampling.

So, through querying we are both retrieving documents to

generate the necessary statistics and at the same time aim to

retrieve documents that are in the top-𝑘 relevant documents.

So, we can consider our approach as a case of “exploration

vs. exploitation.”

Even though we can use any Boolean query in our strategy,

we only consider conjunctive Boolean queries as candidates,

873

given that a disjunctive query can be split to a set of con-

junctive queries. Conjunctive queries provide a good query

granularity and simplify the analysis below. Note that in

practice we add negation conditions to the issued conjunctive

queries in order to avoid retrieving the same results multiple

times. For instance, if 𝑄 = {𝑎, 𝑏}, after submitting 𝑞1 =
𝑎 𝐴𝑁𝐷 𝑏, we submit 𝑞2 = 𝑎 𝐴𝑁𝐷 𝑁𝑂𝑇 𝑏 instead of 𝑞2 = 𝑎.

So, what are the goals of our querying strategy? Following

Equation 1, we need to know the tf and df values for the

terms in the database, to estimate the similarity score of a

query to a document. Using these values, we can then estimate

the overall similarity score distribution for all the documents

in the database. Given the score distribution, we can compute

how many documents in the database have score higher than

the documents that we have seen so far.

The relatively easy part is the estimation of the df values.

We can estimate these values in two ways: (a) We can send

𝑛 queries to the database, one for each query term 𝑡𝑖, and

compute the df value for each term. Note that the PubMed

eUtils, which we use in our experiments, have a method to

directly return the number of results (df) for a query. (b) We

can use estimates of the idf (inverse df) values by using some

other database with similar content (for example, using the

Google Web 1T 5-gram collection1).

The more challenging part is the estimation of the tf values.

We need to estimate the value of tf for each query term

and for each document, that is, a total of 𝑛 × ∣𝐷∣ values.

This is rather unrealistic without having direct access to the

underlying database. So, we adopt a query-based probabilistic

approach and we use the fact that term frequencies (tf) tend

to follow a Poisson distribution within the documents of a

database [16]. The more accurately we know the parameters

of the distribution, the better we can estimate the document

score distribution, and the better we can estimate how many

documents should be in the top-𝑘 results but are still not

retrieved.

Below, we describe briefly our strategies, giving the intu-

ition behind each approach. We provide the complete theo-

retical analysis and the associated algorithms in the extended

version of this paper [6].

One strategy for estimating the distribution parameter values

is to generate a static document sample from the database and

use this sample as a database summary for our estimations.

However, we found that this summary-based strategy has low

accuracy. The alternative, query-based strategy, relies on the

exploitation-exploration framework, and combines sampling

and query execution. In particular, our algorithms learn the

tf distributions of the query keywords while the sequence of

conjunctive queries are submitted. We account for the query-

bias of the retrieved samples. That is, we estimate, given the

retrieved documents for query 𝑡, how many empty documents

we would have seen if we were performing random sampling.

Now, assuming that we know the score distribution for 𝑄
of the documents, we can estimate the benefit that each

1http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13/

issued query will generate: we can estimate the distribution

of document scores (with respect to 𝑄) for the documents

retrieved by a conjunctive query 𝑞. Therefore, we can estimate

the benefit of a query 𝑞, defined as the probability that a

randomly selected document from the answer of 𝑞 will have

score higher than the 𝑘-th ranked score for 𝑄 among the

documents retrieved so far.

To achieve that, we create a priority queue with all candidate

queries 𝑞, ordered by expected benefit. We select the query at

the top of the priority queue, retrieve documents, and based on

the results we update the expected benefits of the other queries.

Then, we pick the query with the next-highest expected benefit

and so on. The algorithm terminates when the benefit (i.e.,

probability of retrieving a top-𝑘 document) drops below a

user-specified probability constant 𝑃 . That is, the algorithm

terminates when every unseen result has probability less than

𝑃 to be in the top-𝑘 answer. Note that 𝑃 is provided by a

domain expert to balance response time and accuracy, and

hence users do not have to worry about it in practice. In the

next sections we describe in detail our approach.

V. EXPERIMENTS

We experimentally evaluate the performance and quality of

the retrieval algorithms. We compare the Query-based prob-

ability estimation strategy to the Summary-based estimation

strategy:

∙ Baseline: This algorithm submits the disjunction of all

query keywords to the database, gets all results, computes

their IR score, and finally return the top-k to the user.

∙ Summary-based: A sequence of conjunctive queries are

submitted. The tf distributions are computed using a

query-independent static database sample, as described

in Section IV.

∙ Query-based: A sequence of conjunctive queries are

submitted. The tf distributions are computed using the

query-dependent, exploration and exploitation approach

overviewed in Section IV.

Configuration: All experiments were run on a PC with

a 2.5G Intel quad-core processor with 4G RAM running

Windows XP SP2. The algorithms were implemented in Java.

Datasets: We ran our algorithm on the PubMed dataset,

which can be remotely accessed through PubMed Web access

utility services (RemotePubMed).2 We only retrieve the ab-

stracts of the articles since the body of many articles is missing

from PubMed. Note that PubMed does not offer any form of

relevance-based ranking. All results are ranked by date.

We used a subest of the English Test Questions from the

TREC website3 as our queries.

Quality Measure: We measure the quality of the algorithms

as follows: we first execute the Baseline algorithm to compute

the optimal top-𝑘 results. Then, we measure the quality of

2http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_
help.html

3http://trec.nist.gov/data/testq_eng.html

874

(a) number of doc. vs. 𝒫 (b) number of fetch vs. 𝒫 (c) time vs. 𝒫
Fig. 1. Varying 𝒫

(a) number of documents vs. k (b) number of fetch vs. k (c) time vs. k
Fig. 2. Varying 𝑘

(a) #doc vs. #keywords (b) #fetch vs.#keywords (c) time vs. #keywords

Fig. 3. Varying #keywords

(a) fr vs. 𝑘 (b) fr vs. #kwd

Fig. 4. Footrule vs. 𝑘 and #kwd

Query-based and Block-based algorithms by comparing their

top-𝑘 search results to this optimal list generated by the

Baseline algorithm. We compare two top-𝑘 lists using the

normalized top-𝑘 Spearman’s Footrule metric [4].

In Figures 1, 2 and 3 we compare the three approaches

for vaying user-specified results confidence 𝒫 , top-𝑘 and

#keywords respectively.

Generally, we see that the Summary-based variant is slightly

faster than the Query-based variant. On the other hand, Query-

based is more accurate since its estimation strategy is better.

VI. CONCLUSIONS

We presented a framework and efficient algorithms to build

a ranking wrapper on top of a documents data source that only

serves Boolean keyword queries. This setting is common in

various major databases today, including PubMed and USPTO.

Our algorithm submits a minimal sequence of conjunctive

queries instead of a very expensive disjunctive one. The query

score distributions of the candidate conjunctive queries are

learned as documents are retrieved from the source. Our com-

prehensive experimental evaluation on the PubMed database

shows that we achieve order of magnitude improvement com-

pared to the baseline approach.

ACKNOWLEDGMENTS

Vagelis Hristidis was partly supported by NSF grant IIS-

0811922 and DHS grant 2009-ST-062-000016. Panagiotis G.

Ipeirotis was supported by the National Science Foundation

under Grant No. IIS-0643846.

REFERENCES

[1] M. K. Bergman. The Deep Web: Surfacing hidden value. Journal of
Electronic Publishing, 7(1), Aug. 2001.

[2] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of
Experiments. Springer, 1985.

[3] J. P. Callan and M. Connell. Query-based sampling of text databases.
ACM Trans. on Information Systems, 19(2):97–130, 2001.

[4] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA
’03: Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 28–36, Philadelphia, PA, USA, 2003.

[5] R. C. Geer, D. J. Messersmith, K. Alpi, M. Bhagwat, A. Chattopadhyay,
N. Gaedeke, J. Lyon, M. E. Minie, R. C. Morris, J. A. Ohles, D. L.
Osterbur, and M. R. Tennant. NCBI advanced workshop for bioinfor-
matics information specialists: Sample user questions and answers. Ac-
cessible at http://www.ncbi.nlm.nih.gov/Class/NAWBIS/
index.html, 2002. Last revised on August 6th 2007.

[6] V. Hristidis, Y. Hu, and P.G. Ipeirotis. Efficient Ranked Queries on
Sources with Boolean Query Interfaces. NYU/CeDER Working Pa-
per CeDER-09-05. Available at http://hdl.handle.net/2451/
28302, 2009.

[7] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4):1–58, 2008.

[8] P. G. Ipeirotis and L. Gravano. Distributed search over the hidden web:
Hierarchical database sampling and selection. In VLDB, pages 394–405,
2002.

[9] J. Lee, J. Lee, and H. Lee. Exploration and exploitation in the presence
of network externalities. Management Science, 49(4):553–570, Apr.
2003.

[10] W. G. Macready and D. H. Wolpert. Bandit problems and the
exploration/exploitation tradeoff. IEEE Transactions on Evolutionary
Computation, 2(1):2–22, Apr. 1998.

[11] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy. Google’s deep web crawl. PVLDB, 1(2):1241–1252, 2008.

[12] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hidden web
content by keyword queries. In JCDL, 2005.

[13] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and
M. Gatford. Okapi at trec-3. In TREC, 1994.

[14] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[15] A. Singhal. Modern information retrieval: A brief overview. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering,
24(4):35–42, 2001.

[16] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation
with probabilistic guarantees. In VLDB, pages 648–659, 2004.

875

