
Text Joins for Data Cleansing and Integration in an RDBMS

Luis Gravano∗ Panagiotis G. Ipeirotis∗ Nick Koudas Divesh Srivastava
Columbia University AT&T Labs–Research

{gravano,pirot}@cs.columbia.edu {koudas,divesh}@research.att.com

Abstract

An organization’s data records are often noisy because of
transcription errors, incomplete information, lack of standard
formats for textual data or combinations thereof. A fundamen-
tal task in a data cleaning system is matching textual attributes
that refer to the same entity (e.g., organization name or ad-
dress). This matching can be effectively performed via the co-
sine similarity metric from the information retrieval field. For
robustness and scalability, these “text joins” are best done in-
side an RDBMS, which is where the data is likely to reside.
Unfortunately, computing an exact answer to a text join can be
expensive. In this paper, we propose an approximate, sampling-
based text join execution strategy that can be robustly executed
in a standard, unmodified RDBMS.

1. Introduction

A fundamental task in data cleaning is the detection of
records in a database that refer to the same entity but have
different representations across relations or across databases.
Many approaches to data cleaning use a text matching step,
where similar textual entries are matched together as potential
duplicates. Although text matching is an importantcomponent
of data cleaning systems [1, 9], little emphasis is put on the effi-
ciency of this operation. For scalability and robustness reasons,
it is important to perform this matching within an RDBMS,
which is the place where the data is likely to reside. We propose
a technique for implementing the text matching step completely
within an unmodified RDBMS, using plain SQL statements.

We use the cosine similarity metric [10] of textual similar-
ity to identify potential text matches across relations. Consider,
without loss of generality, two relationsR1 andR2 with one
textual attribute each. Each textual attribute can be decomposed
into a collection of atomic “entities” that we generally refer to
astokens, and which can be defined in a variety of ways1. Our
discussion treats the term token as generic, as the choice of to-
ken is orthogonal to the design of our algorithms.

∗Luis Gravano and Panagiotis G. Ipeirotis were funded in part by NSF under
Grants No. IIS-97-33880 and IIS-98-17434.

1The tokens might be thewordsthat appear in the textual attribute. Alter-
natively, we could divide a textual attribute intoq-grams, which are substrings
of q consecutive characters. For example, “$A,” “AT,” “T&,” “&T,” “T ,” “ L,”
“La,” “ab,” “bs,” “s#,” are the 2-grams for “AT&T Labs” after we add dummy
characters “$” and “#” at the beginning and end of the text [5].

According to the vector-space retrieval model, we concep-
tually map each tuplet ∈ Ri to a vectorvt. The value of the
j-th componentvt(j) of vt is a real number that corresponds to
the weight of the tokenj. We exploit an instance of the well-
establishedtf.idf weighting scheme [10] to assign weights to
tokens. Under this scheme, the weight for a tokenw in a tu-
ple is high ifw appears a large number of times in the tuple
(tf factor) andw is a sufficiently “rare” token in the relation
(idf factor). Using this scheme, say for a relation with com-
pany names, relatively infrequent tokens such as “AT&T” or
“IBM” will have higher weights than more frequent tokens such
as “Inc.” A variant of this general weighting scheme has been
successfully used for our task by Cohen’s WHIRL system [3].
Our technique can be viewed as bringing WHIRL’s functional-
ity inside an RDBMS. To simplify the computation of vector
similarities, we normalize vectorvt to unit length.

Definition 1 (Cosine Similarity) Given tuplest1 ∈ R1 and
t2 ∈ R2, let vt1 and vt2 be their corresponding normalized
weight vectors and letD be the set of all tokens inR1 andR2.
Thecosine similarity(or just similarity, for brevity) ofvt1 and

vt2 is defined assim(vt1 , vt2) =
∑|D|
j=1 vt1(j)vt2(j).

This similarity metric has values between 0 and 1. Intuitively,
two vectors are similar if they share many important tokens. For
example, “IBM” will be highly similar to “IBM Corp,” since
they differ only on the token “Corp,” which is likely to appear
in many different tuples and hence have low weight. On the
other hand, “IBM Research” and “AT&T Research” will have
lower similarity as they share only one relatively common token
(i.e., “Research”).

We use this similarity metric to define atext join between
relations on textual attributes:

Definition 2 (Text Join) Given two relationsR1 andR2, to-
gether with a user-specified similarity threshold0 ≤ φ ≤ 1, the
text joinR11̃φR2 returns all pairs of tuples(t1, t2) such that
t1 ∈ R1 andt2 ∈ R2, andsim(vt1 , vt2) ≥ φ.

2. Sample-based Text Joins in SQL
The text join of two relations can be computed in a number

of ways. Cohen’s WHIRL system [3] does so using anA∗-
based stand-alone procedure. In contrast, in this section we
focus on computing text joins inside an RDBMS for robustness

1

SELECT r1w.tid AS tid1, r2w.tid AS tid2
FROM R1Weights r1w, R2Weights r2w
WHERE r1w.token = r2w.token
GROUP BY r1w.tid, r2w.tid
HAVING SUM(r1w.weight*r2w.weight) ≥ φ

Figure 1.Baseline approach for computing the exact value of
R11̃φR2.

and scalability, relying only on standard, unmodified SQL. Sec-
tion 2.1 defines the auxiliary relations that we use. Then, Sec-
tion 2.2 discusses an efficient, sampling based implementation
of text joins in SQL.

2.1. Creating Weight Vectors for Tuples

To compute the text joinR11̃φR2, we need the weight vec-
tor associated with the tokens of each tuple inR1 andR2,
for a specific choice of tokens (e.g.,q-grams or words). Ini-
tially, we create the relationsRiTokens(tid , token), which
contain an entry for eachtoken present in theRi tuple with
id tid. This relation can be implemented in SQL (the im-
plementation varies with the choice of tokens). Using the
RiTokensrelations we can again create in SQL the relations
RiWeights(tid , token,weight), where a tuple〈tid , token, w〉
indicates thattoken has normalized weightw in the Ri
tuple identified by tid. Finally, we create the relations
RiSum(token, total) to store for eachtoken the total added
weighttotal in relationRi, as indicated in relationRiWeights.
The SQL statements to create these relations are available at
http://www.cs.columbia.edu/˜pirot/DataCleaning/ .

2.2. Implementing Text Joins in SQL

A baseline approach, adapted from [6], to compute
R11̃φR2 is shown in Figure1. This SQL statement computes
the similarity of each pair of tuples and filters out any pair with
similarity less than the thresholdφ. This approach produces an
exact answer toR11̃φR2 whenφ > 0. The result ofR11̃φR2

only contains pairs of tuples fromR1 andR2 with similarity φ
or higher. Usually, we are interested in high values for thresh-
old φ, which should typically result in only a few tuples from
R2 matching each tuple fromR1. The baseline approach in
Figure1, however, calculates the similarity of all pairs of tu-
ples fromR1 andR2 that share at least one token. As a result,
this baseline approach is inefficient: most of the candidate tu-
ple pairs that it considers do not make it to the final result of the
text join.

We present a sampling-based technique to execute text joins
efficiently, drastically reducing the number of candidate tuple
pairs that are considered during query processing. The intuition
behind the sampling-based approach, which can be viewed as
a specialization of the technique presented in [2], is the fol-
lowing: The cosine similarity between two tuplest1 and t2
is equal to

∑|D|
j=1 vt1(j)vt2(j). To compute tuple pairs with

high similarity, we consideronly partial productsvt1(j)vt2(j)

SELECT rw.tid, rw.token, rw.weight/rs.total AS P
FROM RiWeights rw, RiSum rs
WHERE rw.token = rs.token

Figure 2.Creating an auxiliary relation that we sample to create
RiSample(tid , token, c).

INSERT INTO RiSample(tid,token,c)
SELECT rw.tid, rw.token,

ROUND(S * rw.weight/rs.total, 0) AS c
FROM RiWeights rw, RiSum rs
WHERE rw.token = rs.token AND

ROUND(S * rw.weight/rs.total, 0) > 0

Figure 3.A deterministic version of the sampling step, which
results in a compact representation ofRiSample.

with high values. Since a productvt1(j)vt2(j) cannot be high
when eithervt1(j) or vt2(j) is too small, we can effectively ig-
nore tokens that have low weightvt1(j) or vt2(j) and still get a
good approximation of the correct similarities. Hence, instead
of using the relationRiWeights, we can use a smaller rela-
tion RiSample that contains a subset of the tokens present in
RiWeights.

To createRiSample, we useweightedsampling andnotuni-
form sampling, and we sample each tokenj from a vectorvtq
with probability

vtq (j)

Sum(j) , whereSum(j) =
∑|Ri|
k=1 vtk(j). We

perform S trials for eachRiWeights row, yielding approxi-
matelyS samples for each tokenj (S is a sampling parameter;
larger values result in higher accuracy at the expense of query
processing time). We can implement this sampling step in SQL.
Conceptually, we join the relationsRiWeights andRiSum on
the tokenattribute as in Figure2. TheP attribute in the re-
sult is the probability with which we should pick a particular
tuple. For each tuple in the output of the query of Figure2
we need to performS trials, picking each time the tuple with
probability P . Then, we insert intoRiSample tuples of the
form 〈tid, t, c〉 wherec is the number of successful trials. The
S trials can be implemented in various ways. We can open
a cursor on the result of the query in Figure2, read one tu-
ple at a time, performS trials on each tuple, and then write
back the result. Alternatively, a pure-SQL “simulation” of the
sampling step deterministically defines that each tuple will re-
sult in Round(S · RiWeights.weight

RiSum.total) “successes” afterS trials,
on average. This deterministic version of the query is shown
in Figure3. We have implemented and run experiments using
the deterministic version, and obtained virtually the same per-
formance as with the cursor-based implementation of sampling
over the Figure2 query.

After creating the weighted sample of a relationR2,
R2Sample, we join it with the other relationR1 to approxi-
mateR11̃φR2. The sampling step used only the token weights
from R2 for the sampling, ignoring the weights of the to-
kens in the other relation,R1. The cosine similarity, how-
ever, uses the products of the weights frombothrelations. Dur-
ing the join step we use the token weights in the non-sampled

2

http://www.cs.columbia.edu/~pirot/DataCleaning/�

SELECT r1w.tid AS tid1, r2s.tid AS tid2
FROM R1Weights r1w, R2Sample r2s,

R2sum r2sum
WHERE r1w.token = r2s.token AND

r1w.token = r2sum.token
GROUP BY r1w.tid, r2s.tid
HAVING SUM(r1w.weight*r2sum.total*r2s.c) ≥ S ∗ φ

Figure 4.Implementing the sampling-based text join in SQL, by
samplingR2 and weighting the sample usingR1.

relation to get estimates of the cosine similarity, as follows.
We focus on eachtq ∈ R1 and each tokenj with non-zero
weight invtq . For eachR2Sample tuple 〈i, j, c〉, we compute
the valuevtq (j) · Sum(j) · c, which is an approximation of
vtq (j) · vti(j) · S. The sum of these partial products across all
tokens is then an estimate of the similarity oftq and ti, mul-
tiplied by S. Hence, we can output as the answer those tuple
pairs whose associated sum is greater thanS · φ, whereφ is the
user-specified threshold.

We implement the join step as an SQL statement (Fig-
ure 4). We weight each tuple from the sample according to
R1Weights.weight ·R2Sum.total ·R2Sample.c, which corre-
sponds tovtq (j) ·Sum(j) ·c. Then, we sum the partial products
for each tuple pair (see GROUP BY clause). For each group,
the result of the SUM is the estimated similarity of the tuple
pair, multiplied byS. Finally, we apply the filter as a simple
comparison in the HAVING clause: we check whether the sim-
ilarity of a tuple pair exceeds the threshold. The final output
of this SQL operation is a set of tuple id pairs with estimated
similarity exceeding thresholdφ.

3. Related Work
The problem of approximate string matching has attracted

interest in the algorithms and combinatorial pattern matching
communities [8] and results from this area have been used
for data integration and cleansing applications [4, 5]. The
string edit distance[7] (with its numerous variants) has been
frequently used for approximate string matching. Gravano
et al. [5] presented a method to integrate approximate string
matching via edit distance into a database and realize it as SQL
statements.

The information retrieval field has produced approaches to
speed up query execution that involve computation of the cosine
similarity metric using inverted indexes [13]. Techniques that
are based on the pruning of the inverted index [11, 12] are close
in spirit to our work, especially if we implement the sampling
step using the ROUND function (Figure3), which effectively
prunes all the tokens with small weights.

Cohen’s WHIRL system [3] is also highly relevant to our
work. WHIRL reasons explicitly about text similarity to com-
pute text joins using the cosine similarity metric. A key dif-
ference in our proposed techniques is our goal to perform text
joinswithin an unmodified RDBMSfor robustness and scalabil-
ity. Grossman et al. [6] share this goal and present techniques
for representing text documents and their associated term fre-
quencies in relational tables, as well as for mapping boolean

and vector-space queries into standard SQL queries. They also
use a query-pruning technique, based on word frequencies, to
speed up query execution. Finally, the sampling-based algo-
rithm presented in Section2.2can be viewed as an instance of
the approximate multiplication algorithm presented in [2]. The
main difference is that our technique is adapted for efficient join
execution. A direct application of the algorithm in [2] for ap-
proximate text joins would require a nested-loop evaluation of
the join.

4. Discussion
We performed a thorough evaluation of our technique using

different token choices (i.e., words andq-grams for different
values ofq) and comparing against alternative strategies. We
do not report this evaluation here for space constraints. As a
summary of our results, our proposed technique is orders of
magnitude faster than the baseline technique of Figure1. Fur-
thermore, the answers that we produce are a good approxima-
tion of the exact text joins. We also performed a comparison
with WHIRL, which showed the importance of leveraging an
RDBMS for scalability. Using WHIRL, in contrast, was prob-
lematic for large data sets when we usedq-grams as tokens.
In conclusion, our experiments provide evidence that our pro-
posed technique is robust and scalable for approximate text join
computation.

References
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating

fuzzy duplicates in data warehouses. InVLDB 2002.
[2] E. Cohen and D. D. Lewis. Approximating matrix multiplication

for pattern recognition tasks. InSODA 1997.
[3] W. W. Cohen. Integration of heterogeneous databases without

common domains using queries based on textual similarity. In
SIGMOD 1998.

[4] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative data cleaning: Language, model, and algorithms. In
VLDB 2001.

[5] L. Gravano, P. G. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukr-
ishnan, and D. Srivastava. Approximate string joins in a database
(almost) for free. InVLDB 2001.

[6] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C. Roberts.
Integrating structured data and text: A relational approach.JA-
SIS,48(2), 1997.

[7] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals.Doklady Akademii Nauk SSSR, 163(4),
1965.

[8] G. Navarro. A guided tour to approximate string matching.ACM
Computing Surveys, 33(1), 2001.

[9] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. InKDD 2002.

[10] A. Singhal. Modern information retrieval: A brief overview.
IEEE Data Engineering Bulletin, 24(4), 2001.

[11] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Her-
scovici, and Y. S. Maarek. Static index pruning for information
retrieval systems. InSIGIR 2001.

[12] A. N. Vo, O. de Kretser, and A. Moffat. Vector-space ranking
with effective early termination. InSIGIR 2001.

[13] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, second edi-
tion. Morgan Kaufmann Publishing, 1999.

3

