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ABSTRACT
Crowdsourcing services, such as Amazon Mechanical Turk,
allow for easy distribution of small tasks to a large number of
workers. Unfortunately, since manually verifying the quality
of the submitted results is hard, malicious workers often take
advantage of the verification difficulty and submit answers of
low quality. Currently, most requesters rely on redundancy
to identify the correct answers. However, redundancy is not
a panacea. Massive redundancy is expensive, increasing sig-
nificantly the cost of crowdsourced solutions. Therefore, we
need techniques that will accurately estimate the quality of
the workers, allowing for the rejection and blocking of the
low-performing workers and spammers.

However, existing techniques cannot separate the true (un-
recoverable) error rate from the (recoverable) biases that some
workers exhibit. This lack of separation leads to incorrect
assessments of a worker’s quality. We present algorithms that
improve the existing state-of-the-art techniques, enabling the
separation of bias and error. Our algorithm generates a scalar
score representing the inherent quality of each worker. We
illustrate how to incorporate cost-sensitive classification errors
in the overall framework and how to seamlessly integrate unsu-
pervised and supervised techniques for inferring the quality of
the workers. We present experimental results demonstrating
the performance of the proposed algorithm under a variety of
settings.

1. INTRODUCTION
Crowdsourcing has emerged over the last few years as an im-

portant new labor pool for a variety of tasks[3], ranging from
micro-tasks on Mechanical Turk to big innovation contents
conducted by Netflix and Innocentive. Amazon Mechanical
Turk today dominates the market for crowdsourcing small
tasks that would be too repetitive and too tedious for an indi-
vidual to accomplish. Amazon Mechanical Turk established
a marketplace where requesters can post tasks and workers
complete them for relatively small amounts of money. Image
tagging, relevance feedback, document labeling, are all tasks
that are now routinely being completed online using the Ama-
zon Mechanical Turk marketplace, delivering higher speed of
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completion and lower price than in-house solutions.

Example 1. Consider the following document labeling task:
A worker has to look at a web site and decide whether there is
any adult content on the page. The worker has to classify the
page into one of the four categories: G for no adult content,
PG for content that requires parental guidance, R for content
that is appropriate mainly for adults, and X for hardcore porn.
The rate of completion, when done by a trained intern, was
250 web sites per hour, at a cost of $15/hr. When posted on
Amazon Mechanical Turk, the labeling rate went up to 2,500
web sites per hour and the overall cost remained the same.
In other words, the use of a highly distributed workforce that
works in parallel, allows a tenfold improvement in productivity.
2

Unfortunately, distributing labeling work to crowdsourcing
platforms, such as Amazon Mechanical Turk, exposes the
requester to quality risks. Verifying the quality of every sub-
mitted answer is an expensive operation and negates many
of the advantages of crowdsourcing: the cost and time for
verifying the correctness of the submitted solutions is typically
comparable to the cost and time for performing the task itself.
A common solution to this challenge is to rely on redundancy
and repeated labeling: the same task is completed by multiple
workers. Then using rules, such as majority voting, it is feasi-
ble to identify the correct answers. Unfortunately, repeated
labeling is rather costly: if we ask 10 workers to complete the
same task, then the cost of crowdsourcing solutions tends to
be comparable to the cost of in-house solutions.

A solution is to use redundancy not only for identifying
the correct answers to each task but also for measuring the
labeling quality of the workers. Dawid and Skene [2] proposed
a solution, based on an expectation maximization algorithm.
The algorithm iterates until convergence, following two steps:
(1) estimates the correct answer for each task, using labels
assigned by multiple workers, accounting for the quality of
each worker; and (2) estimates the quality of the workers
by comparing the submitted answers to the inferred correct
answers. The final output of the Dawid&Skene algorithm is
the set of (estimated) correct answers for each task and a “con-
fusion matrix” for each worker, listing the error probabilities
for each worker. From the confusion matrix we can directly
measure the overall error rate for each worker as the sum of
the non-diagonal elements of the confusion matrix (properly
weighted by the priors): this results in a single, scalar value
as the quality score for each worker.

Unfortunately, the error rate alone is not sufficient to mea-
sure the inherent value of a worker. For example, workers
may be careful but biased. In the web site labeling example,
parents with young children tend to be more conservative than



others, and tend to classify PG-rated sites as R-rated sites,
and R-rated sites as X -rated. Such workers give consistently
and predictably incorrect answers. Unlike with spammers,
with biased workers it is possible to “reverse” the errors and
get a label assignment of much higher quality. So, in the
presence of systematic bias, the naive measurement of error
rate results in underestimates of the true quality of the worker
and in potential incorrect rejections and blocks of legitimate
workers.

As the main contribution of this paper, we present an
algorithm that separates the unrecoverable error rate from
bias. The basic idea is to use the confusion matrix of each
worker and transform every assigned “hard” label from the
worker into a “soft” label, which reflects the error rate of
the worker. Then we can measure the uncertainty and cost
associated with each such “soft” label. The final result is a
quality score for each worker, potentially adjusted for the
different costs of the misclassification errors, which measures
the non-recoverable error rate of each worker. Our experiments
illustrate that our algorithm is efficient in estimating the true
quality of the workers.

2. ESTIMATING WORKER QUALITY
Dawid and Skene [2] presented an expectation maximiza-

tion algorithm, using maximum likelihood, for inferring the
error rates of annotators that assign class labels to objects,
when the “gold” truth is unknown. Bayesian versions of the
algorithm were recently proposed by Raykar et al. [4] and by
Carpenter [1].

The EM algorithm of Dawid and Skene takes as input a set
of N objects, o1, . . . , oN , each being associated with a latent
true class label T (on), picked from one of the L different
labels. Each object is annotated by one or more of the K
workers, each having a varying degree of quality. To measure
the quality of each worker, the algorithm endows each worker

(k) with a latent “confusion matrix” π
(k)
ij , which gives the

probability that worker (k), when presented with an object of
true class i, will classify the object into category j.

Algorithm 1 presents a sketch of the process. The algorithm
iterates between estimating the correct labels T (on) for each

of the objects, and estimating the error rates π
(k)
ij for each

worker. (The complete details are given in [2] and are rather
secondary at this point.)

What is of interest to for our work, are the estimated error

rates π
(k)
ij for each worker and how we can use these values for

estimating the non-recoverable error rate of each worker. So
far, when estimating the quality of the workers, the main idea
was to sum the non-diagonal entries of the matrix π(k) (i.e.,

sum all the values π
(k)
ij with i 6= j), weighting each error rate

using the estimated prior of each class. Unfortunately, this is
insufficient. For example, consider the following example:

Example 2. Consider two workers that label web sites into
two classes: porn and notporn. Worker A is always incorrect:
labels all porn web sites as notporn and vice versa. Worker
B classifies all web sites, irrespectively of their true class, as
porn. Which of the two workers is better? A simple error
analysis indicates that the error rate of worker A is 100%,
while the error rate of worker B is “only” 50%.1 However, it
is easy to see that the errors of worker A are easily reversible,
while the errors of worker B are irreversible. In fact, worker
A is a perfect worker, while worker B is a spammer. 2

1Assume, for simplicity, equal priors for the two classes.

Input: Labels l[k][n] from worker (k) to object on,

Output: Confusion matrix π
(k)
ij for each worker (k), Correct

labels T (on) for each object on, Class priors Pr{C}
for each class C

1 Initialize error rates π
(k)
ij for each worker (k) (e.g., assume each

worker is perfect);
2 Initialize correct label for each object T (on) (e.g., using

majority vote);
3 while not converged do
4 Estimate the correct label T (on) for each object, using the

labels l[·][n] assigned to on by workers, weighting the votes

using the error rates π
(k)
ij ;

5 Estimate the error rates π
(k)
ij , for each worker (k), using

the correct labels T (on) and the assigned labels l[k][n];
6 Estimate the class priors Pr{C}, for each class C;
7 end

8 return Estimated error rates π
(k)
ij , Estimated correct labels

T (on), Estimated class priors Pr{C}
Algorithm 1: The EM algorithm for worker quality estima-
tion.

So, naturally a question arises: How can we separate low-
quality workers from high-quality, but biased, workers? We
examine this question next.

3. SEPARATING ERROR AND BIAS
After running the EM algorithm, we have some reasonably

accurate estimates of the error rates π
(k)
ij for each worker.

How can we estimate from these values the intrinsic, non-
recoverable error rate?

We start with the following observation: Each worker assigns
a “hard” label to each object. Using the error rates for this
worker, we can transform this assigned label into a “soft” label,
which is the best possible estimate that we have for the true
label assignment. So, if we have L possible classes and the
worker assigns class j as a label to an object, we can transform
this “hard” assigned label into the “soft” label:〈

π
(k)
1j · Pr{C = 1}, . . . , π(k)

Lj · Pr{C = L}
〉

(1)

where π
(k)
ij is the probability that worker (k) classifies into

class j, an object that in reality belongs to class i, Pr{C = i} is
the prior that the object will belong to class i. We should note
that the quantities above need to be normalized by dividing
them with

Pr{AC = j} =

L∑
i

π
(k)
ij · Pr{C = i} (2)

the probability that worker (k) assigns label j to any object.

Example 3. Take the case of worker A from the previous
example. When this worker assigns a label of Porn (assume
that porn is class 1), then the corresponding soft label has all
the “probability mass” in the NotPorn category:

(
1
0

)
︸ ︷︷ ︸

Assigned: Porn

⇒
(

0
1

)
︸ ︷︷ ︸

Corrected to: NotPorn

On the contrary, for worker B, who always assigns porn,
the corresponding corrected soft label does not give us any
information; the soft label simply says that the best guess are
simply the class priors:



(
1
0

)
︸ ︷︷ ︸

Assigned: Porn

⇒
(
Pr{C = 1}
Pr{C = 2}

)
︸ ︷︷ ︸

Corrected to: Class priors

2

So, what can we do with these soft labels? The basic idea
is to estimate the expected cost of a soft label. To estimate the
cost of a soft label, we need to consider the misclassification
costs. In the simplest case, we have a cost of 1 when an object
is misclassified, and 0 otherwise. In a more general case, we
have a cost cij when an object of class i is classified into
category j.

Lemma 1. Given a set of classification costs cij , and a soft
label p = 〈p1, p2, . . . , pL〉, the expected cost of this soft label
is:

Cost (p) =

L∑
i=1

L∑
j=1

pi · pj · cij (3)

2

The proof is rather simple. The expected classification cost
is equal to the probability of classifying the object in class
i (which is pi), multiplied by the probability of the object
belonging to class j in reality (which is pj), multiplied with
the associated cost of classifying an object of class j into class
i (which is cji). Summing across all classes, we have the result
above.

The results illustrate that workers with error rate matrices
that generate “soft” labels with probability mass concentrated
into a single class (i.e., certain “posterior” labels) will tend to
have low estimated cost, as the product of Equation 3 will
be close to 0. On the contrary, workers that tend to generate
“soft” labels that are spread out across classes (i.e., uncertain
“posterior” labels) will tend to have high associated costs.

Example 4. Consider the costs for the workers A and B
from the previous examples. Assuming equal priors across
classes, and cij = 1, if i 6= j and cij = 0, if i = j, we have
the following: The cost of worker A is 0, as the soft labels
generated by A are 〈0, 1〉 and 〈1, 0〉. For worker B, the cost
is 0.5 (the maximum possible) as the soft labels generated by
B are all 〈0.5, 0.5〉 (i.e., highly uncertain). 2

Given that we know how to compute the estimated cost
for each label, we can now easily estimate the expected cost
for each worker. We first compute the priors Pr{AC = i}
(see Equation 2), which is the prior probability of the worker
assigning label i to an object. Then we compute the“soft label”
that corresponds to the assigned label (see Equation 1). Given
the soft label, we use Equation 3 to compute its expected cost.
Now, knowing how often the worker assigns a label and the
expected cost, we can compute the average misclassification
cost of each worker. Algorithm 2 illustrates the process.

As expected, perfect workers will have a cost of zero and
random workers or spammers will have high expected costs.
Notice, as illustrated in the example above, that it is not
necessary for a worker to return the correct answers in order
to have low costs! As long as the errors are predictable and
reversible, the worker is assigned a low expected cost.

This tends to resolve quite a few issues with online workers
that exhibit systematic biases in their answers but also put a

Input: Error rates π
(k)
ij for each worker, Misclassification costs

c[i][j], Class priors Pr{C}
Output: Expected for each worker

1 foreach Worker (k) do
2 Estimate how often the worker (k) assigns label l

(Pr{AC = l}), using Eq. 2;
3 Cost[k] = 0;
4 foreach Label l, assigned with probability Pr{AC = l} do
5 Using Eq. 1, compute the soft label soft(k)(l) that

corresponds to label l assigned by worker (k);

6 Using Eq. 3, compute Cost(soft(k)(l)) for the soft
label;

7 Cost [k] += Cost(soft(k)(l)) · Pr{AC = l};
8 end

9 end
10 return Cost [k] for each worker (k)

Algorithm 2: Estimating the Expected Cost of each Worker

lot of effort in coming up with the answers. Prior approaches
that relied on agreement generate a significant number of
rejections for such workers, which in turn alienates such high-
quality workers, and discourages them from working with
employers that rely on worker agreement. The proposed
algorithm alleviates these concerns.

One question that may arise is how to estimate the baseline
cost for a “random” worker. An easy baseline is to assume
that a worker assigns as label the class with the maximum
prior probability. Alternatively, if we assume a more strategic
spammer, we can set as baseline the expected cost of a worker
that always assigns the same label, and this label assignment
results in the minimum expected cost. Both approaches result
in a good threshold for cutting off bad workers.

4. EXPERIMENTS
We conducted an extensive set of experiments, in order to

examine how accurately the proposed algorithm can estimate:

• the true quality of the labelers, and

• the true class of the examples.

Synthetic Experiments: We conducted a set of synthetic
experiments, in order to have the flexibility of controlling the
composition of the data set and the quality of the workers.
First, we created a data set with 1000 objects, classified with
equal proportions to four categories. Then, we generated 200
labelers with various degrees of classification accuracy, ranging
from 0.35 (slightly above the baseline of 0.25) to 0.8, for each
of the four categories. We also applied a bias/disturbance for
30% of the workers, by randomly selecting two classes and
swapping the assigned labels.

Figure 4 shows how accurately the algorithm can estimate
the “true quality” of a labeler, under a variety of settings. We
noticed that, for quality estimation purposes, the number of
labels assigned by a worker, is an important factor for the es-
timating accurately the true quality of the worker. In general,
we need 20-30 labels from each worker (and approximately
5 labels per example) in order to estimate with high degree
of accuracy the true quality of the worker. We also noticed
that the number of labels per worker affects significantly the
estimation quality, while the number of labels per object has
a much smaller effect.

Figure 4 shows the average classification error for our al-
gorithm, when detecting the true class for each example, for
varying the number of labels per worker, and the number of
labels per object. We observed that the number of labels



 

Figure 1: The estimation error when estimating the
cost of each worker, under 0/1 classification error
costs, with 4 categories of equal priors. 200 labelers
with classification accuracy ranging uniformly from
0.35 to 0.8, and with a bias factor for 30% of the
workers.

 

Figure 2: The average classification error under 0/1
classification error costs, with 4 categories of equal
priors. 200 labelers with classification accuracy rang-
ing uniformly from 0.35 to 0.8, and with a bias factor
for 30% of the workers.

per worker tends to affect only mildly the accuracy of the
estimation. On the other hand, the effect of the number of
labels per example was much more significant.

Experiments with Real Data: We also examined the
effect of our algorithm for identifying spammers in a real-life
task executed on Mechanical Turk. On this task, Mechanical
Turk workers had to look at web pages and classify them into
four categories (G, PG, R, X), depending on the presence of
adult content on the page. (See Example 1.) We labeled 500
web pages, getting 100 labels for each web page. In total, 339
workers participated in the experiment.

To examine the effect of our algorithm, we executed our
algorithm and measured the expected cost of each worker,
using both our algorithm and the “naive” cost estimation
using directly the confusion matrix of each worker. Then, we
eliminated the workers that had an estimated cost of 0.5 and
above. (A completely random worker generates a cost of 0.75,
given that we have 4 categories.)

Our measurements indicated that our algorithm decreased

the cost of annotation by 30%, while at the same time increas-
ing the quality of annotation from 0.95 to 0.998. In other
words, spammers generated 30% of the submitted answers,
and decreased the quality of the results. The same process,
using the “vanilla” EM algorithm, decreased the cost by only
1% and the quality remained effectively unchanged. The main
reason for this failure is the inability of the EM algorithm to
identify the “strategic” spammers; these sophisticated spam-
mers identify the class with the highest class prior (in our
case, the “G” class) and label all the pages as such. Our
cost algorithm takes into consideration the fact that these “G”
labels are very uncertain, while the naive approach does not
penalize the spammer for the “correct” G labels, which are
unfortunately uninformative.

We expect the results to be much more dramatic in terms of
quality when we have significantly fewer labels per example. In
such cases, a few strategic spammers can completely destroy
the quality of the data, and the presence of accurate cost
estimation techniques is paramount.

5. CONCLUSIONS
We presented an algorithm for quality management of the la-

beling process on crowdsourced environments. The algorithm
can be applied when the workers should answer a multiple
choice question to complete a task. The main novelty of
the proposed approach is the ability to assign a single scalar
score to each worker, which corresponds to the quality of the
assigned labels. The score separates the intrinsic error rate
from the bias of the worker, allowing for more reliable quality
estimation. This also leads to more fair treatment of the
workers.

Our experimental results indicate that the algorithm be-
comes accurate with approximately 5 labels per example, and
by asking each worker to label at least 20 to 30 objects (prefer-
ably 50). Given that multiple choice questions take typically
only a few seconds this is a rather easy requirement for a large
number of tasks.

We should also note that the algorithm can seamlessly
integrate the existence of “gold” data for learning the quality
of labelers. It is a trivial change in the algorithm (i.e., do
not update the true class of the “gold” examples, in Step 4 of
Algorithm 1) and tends to improve significantly the estimation
accuracy in the face of sparse data.

The code is open source and available at http://code.

google.com/p/get-another-label/ and a demo is publicly
accessible at http://qmturk.appspot.com/.
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