
Automatic Construction of Multifaceted Browsing Interfaces

Wisam Dakka
Columbia University

wisam@cs.columbia.edu

Panagiotis G. Ipeirotis
New York University

panos@stern.nyu.edu

Kenneth R. Wood
Microsoft Research

Cambridge

krw@microsoft.com

ABSTRACT
Databases of text and text-annotated data constitute a signif-
icant fraction of the information available in electronic form.
Searching and browsing are the typical ways that users lo-
cate items of interest in such databases. Interfaces that use
multifaceted hierarchies represent a new powerful browsing
paradigm which has been proven to be a successful comple-
ment to keyword searching. Thus far, multifaceted hierarchies
have been created manually or semi-automatically, making it
difficult to deploy multifaceted interfaces over a large num-
ber of databases. We present automatic and scalable methods
for creation of multifaceted interfaces. Our methods are inte-
grated with traditional relational databases and can scale well
for large databases. Furthermore, we present methods for se-
lecting the best portions of the generated hierarchies when the
screen space is not sufficient for displaying all the hierarchy at
once. We apply our technique to a range of large data sets, in-
cluding annotated images, television programming schedules,
and web pages. The results are promising and suggest direc-
tions for future research.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing; H.4.3 [Information Systems Applica-
tions]: Communications Applications

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Multifaceted Hierarchies, Browsing, Hiearchy Construction,
Faceted Classification, Faceted Navigation

1. INTRODUCTION
Databases of text and text-annotated data constitute a sig-

nificant fraction of the information available in electronic form.
Users typically locate items of interest in such databases ei-
ther by using keyword-based search or by browsing through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

the contents of the collection. Concept hierarchies are com-
monly used to support browsing activity. Most libraries use
the Dewey Decimal system to organize their holdings, allow-
ing their users to navigate easily through the contents of the
library. Yahoo! also uses a topic-based hierarchy to organize
web sites according to their topic and allows the users to iden-
tify quickly web pages of interest.

Most of the existing systems use a single hierarchy to present
the contents of a collection. Early work by Pollitt [28] and
more recently by Yee et al. [33] showed that multifaceted hi-
erarchies, which allow users to browse across multiple dimen-
sions, are superior than single, monolithic hierarchies. For
example, consider the case of a user looking for images with
dogs playing with children in a farm. Having multiple hier-
archies, the user can browse first through the hierarchy “An-
imals” and select the category “Mammals → Carnivores →
Dogs.” Then, having the “Animal” dimension fixed, the user
can browse through the hierarchy “Places” to locate images
with farms, and then browse through the hierarchy “People”
to locate images with children. Such multifaceted interfaces
expose the contents of the underlying collection and can help
users more quickly locate items of interest. The major short-
coming of the systems that use multifaceted hierarchies is the
need to:

1. Identify manually the dimensions/facets that can be used
to browse a collection, and

2. Create manually the hierarchies for each dimension.

In this paper, we present techniques for automatically con-
structing multifaceted hierarchies from a large collection of
text or text-annotated objects. Specifically, the contributions
of this paper are:

1. A technique for discovering facets that can be used to
browse a collection and identifying the appropriate key-
words for each discovered facet (Section 3).

2. An efficient hierarchy construction algorithm that lever-
ages the capabilities of relational database systems and
stores the hierarchy in an RDBMS for scalable deploy-
ment (Section 4).

3. A set of methods for selecting the best portions of the
generated hierarchies when the screen space is not suffi-
cient for displaying all the hierarchy at once (Section 5).

4. An extensive experimental evaluation, including three
real-life data sets, demonstrating that the proposed tech-
niques are scalable and generate concept hierarchies with
good structural properties.

The rest of the paper is organized as follows: Section 2
gives the necessary background. Section 3 describes our facet

extraction technique and Section 4 outlines our subsumption-
based hierarchy construction algorithm. Section 5 describes
our algorithms for selecting the best categories from a hierar-
chy. Section 6 describe the experimental setting and results.
Finally, Section 7 discusses related work and Section 8 con-
cludes the paper.

2. BACKGROUND
Although we are aware of no work on automatic construc-

tion of multifaceted browsing schemes, automatic creation of
subject hierarchies has been attracting interest for a long time,
mainly in the form of clustering [34, 23]. Scatter/Gather [6]
was a pioneering system that used clustering for browsing large
document collections. Scatter/Gather demonstrated that clus-
tering reveals quickly to the user the contents of the underlying
collection. However, automatic clustering techniques generate
clusters that are typically labeled using a set of keywords, re-
sulting in category titles such as “battery california technology
mile state recharge impact official hour cost government” [12].
While it is possible to understand the content of the docu-
ments in the cluster from the keywords, this presentation is
hardly ideal.

Sanderson and Croft [30] presented an alternative technique
for generating concept hierarchies from text, based on the con-
cept of subsumption. For terms x and y from a document
collection, term x subsumes y (x → y) if:

P (x|y) > 0.8 and P (y|x) < 1

where P (x|y) is the probability that term x occurs in a doc-
ument, given that term y does. Using the generated sub-
sumption relations, the algorithm creates a hierarchy of terms,
which has as top-level categories the general terms, and as
lower-level categories terms that are more specific in nature.

While subsumption is a simple and effective technique for
hierarchy construction, it has two shortcomings: (1) it requires
n2 computations of conditional probabilities, where n is the
number of terms in the collection, and (2) it requires the terms
to have a unique meaning (i.e., requires sense disambiguation
when a term has multiple potential meaning). Sanderson and
Croft sidestepped these problems by focusing only on query
results and using only terms that appear more frequently in
the query results than in the whole collection.1 These heuris-
tics guaranteed that the terms were not ambiguous and that
only a small number of terms is used.

Unfortunately, these heuristics do not apply if we want to
create hierarchies for arbitrary collections. Next, in Section 3,
we show how our facet extraction technique reduces the am-
biguity problem, and then, in Section 4, we show how we can
improve the complexity of the hierarchy construction algo-
rithm.

3. AUTOMATIC FACET EXTRACTION
One of the problems that may appear during the construc-

tion of a concept hierarchy is the fact that the same collection
can be browsed in many different, orthogonal ways. Consider
for example how a user can browse the schedule of TV pro-
grams. It is possible to browse by time, by TV channel, or by
title. It is also possible to browse by actor, for example, or
by many other dimensions. Mixing terms that belong to dif-
ferent dimensions might result in an awkward hierarchy: an
actor might be classified under the term “Monday” because of

1On average they extracted 2350 terms for hierarchy construc-
tion.

a sitcom that is shown every Monday night. While it is a per-
fectly valid subsumption relation, it is not a structure useful
for browsing.

In this section we present our technique for extracting im-
portant navigational facets from a collection. Since there are
already collections that have metadata organized across differ-
ent facets (e.g., the Corbis image collection – see Section 6.1),
we can use these data to train a machine learning algorithm
to classify keywords in the appropriate facets. For example,
the words “cat” and “dog” are under the “Animals” facet,
while the words “mountain” and “fields” are under “Topo-
graphic Features.” Therefore, it is possible to use the facet
as a target class and the keywords as features, in order to as-
sign keywords to the appropriate facet. Unfortunately, such
a straightforward approach does not generalize. A classifier
trained in this way will classify correctly only words that have
been assigned to facets before. A classifier might classify cor-
rectly the words “cat” and “dog” in the “Animals” facet, but
a new word, such as “sheep,” will not be assigned to any facet.

To allow our technique to generalize, we rely on the ob-
servation that keywords under different facets tend to have
different “hypernyms.”2 Based on this observation, we ex-
pand each keyword using its hypernyms from a lexical corpus,
such as WordNet [8]. After the expansion, each keyword is
represented as a set of words. For example, the word “cat”
is represented as “cat, feline, carnivore, mammal, animal, liv-
ing being, object, entity”. The new representation allows the
classifier to generalize more easily and assign unseen words to
the correct facets.

However, using hypernyms does not resolve the problem of
sense disambiguation. Each word can have different meanings
according to its context. Consider the word “kid,” which can
mean either a young person or a young goat. Before assigning
this word to a facet, we have first to decide the true meaning
of the word. To identify the correct sense of the word, we
exploit the fact that keywords are associated with objects and
each object is characterized by a set of other keywords, which
provide valuable clues for the true meaning of the word. (The
use of context is the basis of many techniques [21] for sense
disambiguation.3) For example, when the word “kid” appears
together with the words “goat,” and “grazing” then “kid” is
much more likely to refer to a young goat than to a child.

Based on the above observations, we treat facet classification
as a text classification problem. In text classification [20, 7],
we characterize each document using a set of words; based
on the presence of these words across categories, we train a
classifier to assign documents to the appropriate categories.
In our case, we treat each keyword as three sets of words. The
first set of words contain the keyword itself, the second set
contains the hypernyms of all the senses of the keyword, and
the third set contains the other keywords associated with the
object.

2Hypernym is a linguistic term for a word whose meaning
includes the meanings of other words, as the meaning of vehicle
includes the meaning of car, truck, motorcycle, and so on.
3We should emphasize that disambiguation for facet extrac-
tion is easier than the general problem of sense disambigua-
tion. First, the context keywords are of high quality, some-
thing that is not always the case in natural language sentences.
Second, and most important, while a word might have multiple
senses, the senses are often closely related (see for example,
the WordNet senses for “gear” and “battle”). While sense
disambiguation is hard for such words, closely-related senses
typically correspond to the same facet (“Generic Thing” for
“gear” and “Action, Process, or Activity” for “battle”), elim-
inating the need for disambiguation for facet extraction.

Specifically, our algorithm, for assigning the keywords into
facets, performs the following steps:

1. Get a collection D of text-annotated objects. Each ob-
ject di has a set of associated keywords ki1, . . . , kin and
each keyword kij is assigned to a facet Fij .

2. For each keyword/facet pair kij/Fij :

(a) Define the facet Fij as the target class.

(b) Add the keyword kij in the first set of words.

(c) Add the hypernyms of kij as the second set of words.

(d) Add the other keywords associated with di (and
their hypernyms) in the third set of words.

3. Train a document classifier over the prepared training
data.

After creating the classifier, we can use it over a new set
of annotated objects, to identify the facets that appear in the
collection. After running the classifier over the keywords of the
new objects, we can examine which facets appear frequently in
the new data and use these facets for browsing. Empirically,
we observed that facets that appear in 5% of the data can be
proved useful for locating content of interest. One “disadvan-
tage” of supervised learning techniques is that they cannot
“discover” new types of facets. Identifying new, previously
unknown dimensions for browsing is an interesting direction
for future research.

In this paper, we gathered our training data from a set of
annotated images from the Corbis collection (see Section 6.1),
which contained a comprehensive set of facets.4 We report the
experimental setting and the results in Section 6.

4. FAST HIERARCHY CONSTRUCTION
The objective of this work is to construct automatically con-

cept hierarchies for browsing large collections of text or text-
annotated objects. Current algorithms for concept hierarchy
construction do not scale well and are inadequate for creating
concept hierarchies for collections with tens of thousands of
documents.

4.1 Subsumption Hierarchies
Our hierarchy construction algorithm extends the subsump-

tion-based algorithm from [30], to include the notion of direc-
tionality and the notion of equivalent terms. Two terms x and
y might co-occur in all but a few documents: these terms,
from a co-occurrence point of view, are equivalent. A naive
use of subsumption, though, would consider one of them as
“parent” term and the other as “child.” The directionality
property ensures that x subsumes y only when y appears in
a small fraction of the documents that contain x (i.e., x is
considerably “more general” than y). If two terms co-occur
frequently, and none of them subsumes the other, we consider
them “equivalent” for the purpose of hierarchy construction.

Definition 4.1. [Subsumption and Equivalency]
A term x subsumes y, (x → y) if:

• P (x|y) > τs and P (x|y) > τd · P (y|x).

The terms x and y are equivalent (x ↔ y) if:

• P (x|y) ≥ τs and P (y|x) ≥ τs, and

4The whole collection contains more than 3 million images,
and approximately 40 facets.

• τd · P (y|x) ≥ P (x|y) ≥ 1
τd
· P (y|x).

We denote with τd (τd > 1) the directionality threshold and
with τs (0 < τs < 1) the subsumption threshold. We define

P (x|y) = f(xy)
f(y)

, where f(xy) is the number of objects that

contain both terms x and y and f(x) is the number of objects
that contain term x. 2

One of the shortcomings of subsumption is its reliance on
pairwise computation of conditional probabilities. Therefore
the cost of a naive method is at least O(n2) where n is the
number of terms. Our facet extraction algorithm from Sec-
tion 3 improves this complexity by separating the keywords
into different facets. When we create separate subsumption
hierarchies for each facet, then the complexity is O(m·(n

m
)2) =

O(n2

m
), where m is the number of facets. However, even this

improvement is not sufficient when we have to work with col-
lections that contain tens of thousands of objects and terms.
Next, we present a set of techniques that can improve substan-
tially the efficiency of the hierarchy construction algorithms.

4.2 Efficient Hierarchy Construction
In this section we present a novel algorithm that reduces

substantially the number of pairwise computations. Before
describing the algorithm, we describe one property of sub-
sumption:

Lemma 4.1. A term x can subsume term y, only if f(x) >
τd · f(y) and f(x) > τs · f(y), where f(x) and f(y) are the
document frequencies of x and y, respectively.

By exploiting this lemma, we can build hierarchies by com-
puting a substantially smaller number of conditional probabil-
ities, using the following algorithm:

1. Sort the terms by increasing document frequency.

2. For each term x, compute the conditional probability
P (x|y) for all terms y, with f(y) ·min{1/τd, τs} < f(x).

3. Examine which pairs x, y satisfy the subsumption re-
quirement (Definition 4.1)

Since most keyword frequencies in most collections follow a
Zipfian distribution, this algorithm needs only 25%-30% of the
time needed by the basic subsumption algorithm, depending
on the value of the thresholds. (We omit the proof due to
space constraints.) In Section 6.3 we quantify in detail the
benefits our the algorithm.

Furthermore, by construction, the graph generated by this
algorithm is a directed acyclic graph. To construct the concept
hierarchy, it is necessary to eliminate the forward-edges, i.e.,
edges that connect a term x with its “grandchildren.” To
perform this task we have to perform a topological sort on
the graph, which increases the computational cost. To avoid
creating edges that will be later eliminated, we can exploit the
following lemma.

Lemma 4.2. If x subsumes y (x → y) and y subsumes z
(y → z), then x subsumes z but the edge x → z will be a
forward-edge and will be eliminated from the final hierarchy.

Based on this lemma, we can modify the hierarchy construc-
tion algorithm to eliminate from consideration all the term
pairs that form “redundant” subsumption relations (i.e., sub-
sumptions that will be eliminated later). Finally, we can speed
up considerably the identification of pairs of equivalent terms
using the following lemma:

CreateHierarchy
Extract all terms T = {x1, . . . , xn}

from the objects in the database.
Sort the terms T by increasing document frequency.
foreach term x ∈ T LocateEquivalent(x).
foreach term x ∈ T CreateEdges(x).

LocateEquivalent(Term x)
a1:foreach term y ∈ T with f(y) > f(x) and

f(y) < min{τd, 1/τs} · f(x)
a2: if (x is equivalent to y)
a3: Merge x and y (x ↔ y)
a4: Remove y from T

CreateEdges(Term t)
// Check only terms with sufficiently smaller frequency
b1:foreach term y ∈ T with f(y) < min{1/τd, τs} · f(x):
b2: if ((x subsumes y)

AND NOT (y covered by successors of x))
b3: Create the edge x → y
b4: Mark y as covered by x
b5: CreateEdges(y)

Figure 1: Creating the hierarchy

Lemma 4.3. Two terms x and y, with f(x) ≥ f(y), can
be equivalent only if f(x) ≤ τd · f(y) and f(x) ≤ f(y)/τs,
where f(x) and f(y) are the document frequencies of x and y,
respectively.

The resulting algorithm that exploits all three lemmas is
shown in Figure 1. The algorithm guarantees that the re-
sulting graph is a directed acyclic graph, with no forward
edges; therefore it can be used directly to browse the collec-
tion. Furthermore, our strategy eliminates from consideration
term pairs that a-priori cannot form subsumption or equiva-
lency relations (steps a1 and b1). Additionally, the predicates
in a1 and b1 are easy to implement in relational database
systems, which have been specially optimized to execute such
band joins. The only requirement is to keep a table with the
term frequencies and build an index on the frequency field.
We implemented our prototype on top of a relational data-
base system (Microsoft SQL Server 2000) using mainly SQL
statements for hierarchy construction. The presented algo-
rithm works best when low-frequency terms (which are often
highly-specific) are subsumed “early” by other terms. This is
fortunately the case for most of the cases where it is possible
to extract a meaningful hierarchy from the collection.

4.3 Extracting Terms
So far, we have described the hierarchy construction algo-

rithm assuming that each object comes associated with a set
of keywords. For some object types (e.g., annotated images)
the associated keywords are highly descriptive and can be used
directly with no further steps. The keyword extraction pro-
cess, though, is more complicated when the object annotation
is in free text form. One approach would be to use as terms
all the words that appear in the collection. Still, even after
removing stopwords and filtering out infrequent words, unin-
formative words like “slept,” or “approximately” appeared in
the generated hierarchies.

To eliminate such problems, we decided to keep as terms
only the nouns and noun phrases that appear in the free text

annotations. This choice is supported by earlier studies [11],
which indicated that nouns and noun phrases are good fea-
tures for constructing clusters of text documents. While pars-
ing to identify nouns and noun phrases adds an additional
overhead in the hierarchy construction process, it also reduces
substantially the overall number of terms. This reduction re-
sults in large gains of efficiency, as we have discussed in Sec-
tion 4.2. Additionally, nouns and noun phrases are typically
better suited for titles of categories, and this results in a better
browsing experience.

5. RANKING CATEGORIES
Consider a user browsing a collection using a small-screen

device, such as a smartphone. Typically, the screen cannot dis-
play more than 5-10 categories. Thus, if a category has many
children then the user cannot see all the children at once. The
most prevalent solution to this problem is to paginate the re-
sults, showing the “best” categories first. Ranking categories
is a non-trivial problem; the lack of explicit user goals (char-
acteristic of browsing) makes the problem even harder.

In this section, we propose a set of techniques for ranking
the children of a category. Section 5.1 presents a frequency-
based ranking, which serves as our baseline. Then, Section 5.2
presents our set-cover-based approach, which tries to maxi-
mize coverage of the collection. Finally, Section 5.3 presents
our merit-based approach, which ranks higher categories that
expose the largest fraction of the collection with the lowest
cost for the user.

5.1 Frequency-based Ranking
This technique simply ranks categories by the number of

objects that are classified under the category. Categories that
contain the larger number of objects are ranked higher. This
heuristic allows the user to see first categories with the great-
est wealth of information. Moreover, it guarantees that low-
ranked categories (that might not appear on screen) represent
only a small fraction of the collection.

This ranking scheme is very easy to implement. Further-
more, if the categories do not overlap (i.e., no object is clas-
sified under multiple categories) then this ranking scheme is
optimal in terms of collection coverage. Unfortunately, this
is not always the case. When categories overlap, then the
frequency-based ranking may become sub-optimal by present-
ing first categories with highly overlapping content. The rank-
ing scheme that we present next resolves this problem.

5.2 Set-cover Ranking
The objective of set-cover ranking is to maximize the num-

ber of distinct objects that are accessible from the top-k ranked
categories. In other words, this ranking tries to maximize the
cardinality of the set o(C1) ∪ . . . ∪ o(Ck), where C1 . . . Ck are
the top-k categories and o(Ci) is the set of objects classified
under the category Ci.

This problem is an instance of the set-cover problem, which
is a well-known NP-complete problem [5]. Consequently, the
optimal ranking, which exposes the maximum fraction of the
collection, would take time exponential to the number of cat-
egories. For our purposes, though, the optimal solution is
unnecessary: not only it is unjustifiably expensive, but it also
has the unfortunate property of generating “non-monotonic”
rankings. That is, the top-k categories are not necessarily a
subset of the set with the top-k + 1 categories. This property
can lead to non-intuitive interface behavior: after enlarging
the browser to show larger parts of the hierarchy, categories
that used to be highly-ranked might disappear.

To avoid both the complexity and the non-monotonicity is-
sues, we decided to use a greedy algorithm for category rank-
ing. The greedy algorithm is the best polynomial algorithm
for approximating the set-cover problem, and runs in time lin-
ear to the number of categories. Specifically, the algorithm
works as follows:

1. Mark all the objects as uncovered.

2. Select category C with the largest number of uncovered
objects.

3. Mark all the objects classified under C as covered.

4. If all objects covered or ranked k categories, stop; else
go to Step 2.

Using this greedy algorithm we can quickly compute the top-
k categories and ensure that the displayed categories cover a
large fraction of the underlying collection. If we want to see
more categories, the algorithm can easily resume and rank the
remaining categories.

Both the set-cover and the frequency-based algorithm try
to maximize the number of objects that are covered by the
displayed, top-k categories, regardless of how easy it is to ac-
cess these objects. Next, we present an alternative approach
that considers the structure of the underlying hierarchy and
the respective effort that the user has to put to locate items
of interest.

5.3 Merit-based Ranking
The ranking methods presented so far focused only on cov-

ering as many objects as possible. The merit-based ranking
method that we present now, takes into consideration the
structural properties of the sub-hierarchies under the cate-
gories selected. Specifically, the merit-based method ranks
higher categories that enable users to access their contents
with the smallest cost, on average.

Before describing our merit-based approach, we first define
the cost of locating an object n, classified in a hierarchy H
(H is a directed acyclic graph.) We assume for simplicity that
n is reachable through only one path from the root of the
hierarchy and denote the path as C1 → . . . → Ch. Category
C1 is the root node of H and Ch is the leaf node that contains
the object n. We treat the browsing activity of a user as a
random walk on the hierarchy H. We denote with T (Ci) the
time required to reach n from the node Ci. In general, the
time spent to reach n consists of three components:

• Reading the category headings: While browsing the con-
tents of a category Ci, the user spends time linear to
b(Ci) to read the descriptions of the subcategories of Ci,
where b(Ci) is the number of children of Ci. Hence, to
browse through the children of Ci the user spends time
κb(Ci), where κ is a constant, equal to the time needed
to read the title of a category.

• Correcting mistakes: The user does not always make the
correct decision about the child of Ci that leads to n. We
assume that with an error probability Pe(Ci) the user se-
lects a wrong subcategory of Ci. In that case, we assume
that the user realizes that the chosen subcategory is the
wrong one, returns to Ci, and tries again.5 Thus,, the
user spends time Pe(Ci) · T (Ci) recovering from a mis-
take.

5We can add an extra cost for browsing the contents of the
wrong category and then returning. For simplicity we do not
explore this direction further in this paper.

• Browsing the correct subtree: The user selects with prob-
ability 1−Pe(Ci) the correct sub-category Ci+1. There-
fore, the user spends time (1−Pe(Ci))T (Ci+1) browsing
through the correct subtree of Ci, which leads to n.

Hence, the time T (Ci) that a user spends on Ci is:

T (Ci) = κb(Ci) + Pe(Ci) · T (Ci) + (1− Pe(Ci)) T (Ci+i)

=
κb(Ci)

1− Pe(Ci)
+ T (Ci+i) (1)

Therefore, the time spent browsing through the whole hierar-
chy H to reach n is:

T (H) = T (C1) =

hX
i=1

κb(Ci)

(1− Pe(Ci))
(2)

Using this methodology, we can compute the average cost for
accessing any object classified under the hierarchy Hi rooted
at category Ci. It is clear from Equation 2 that hierarchies H
with large number of children and long paths have large T (H).
However, these are the categories that contain the largest num-
ber of objects. To avoid unfairly penalizing such categories,
we introduce the merit(C) metric for a category C:

merit(C) =
2 · 1

T (C)
· o(C)

1
T (C)

+ o(C)
=

2 · o(C)

1 + T (C) · o(C)
(3)

where o(C) is the number of distinct objects classified under C
and T (C) is defined in Equation 2. This metric is similar to the
F1-measure (which favors high precision and recall) and favors
categories with low cost T (C) and large number of objects
o(C). It should be noted that the merit can be computed
very efficiently in a bottom-up fashion.

Using the merit of each category, we can rank categories
appropriately, putting first categories that have good hierarchy
structures under them and provide access to a large number
of objects.

6. EXPERIMENTAL RESULTS
In this section present the experimental evaluation of our

techniques. We first describe the data sets that we used (Sec-
tion 6.1). Then, in Section 6.2, we evaluate our facet ex-
traction technique of Section 3; in Section 6.3, we examine
the efficiency of our hierarchy construction algorithm of Sec-
tion 4; and in Section 6.4 we evaluate the structural properties
of the generated hierarchies. Finally, in Section 6.5 we provide
further discussion, outlining possible future directions.

6.1 Data Sets

• Corbis: This is a set of 36,820 annotated images, taken
from the Corbis royalty-free collection6. Each image has
a title, a free-text description, and a set of keywords
associated with it. Each keyword is manually assigned
by the Corbis annotators to one of the 38 facets that
are used from Corbis. The Corbis data set has a total
of 65,521 keywords, mainly assigned to 14 out of the
38 facets. The remaining 24 facets had less than 100
keywords assigned to them and we ignored them during
our evaluation.

We also used the Corbis collection to test our facet ex-
traction algorithm of Section 3. Since our algorithm re-
lies on the existence of pre-annotated data, we picked

6http://www.corbis.com

http://www.corbis.com

11,000 keywords and their associated facets from the
Corbis collection and to train and test our algorithm. To
avoid any bias, we randomly picked the 11,000 keywords
from 11,000 randomly selected images (one keyword per
image).

• XMLTV: This set contains all the television programs
broadcasted over 261 channels on the RCN New York
City digital cable system7 over a period of eleven days
(Jan/9/2005 – Jan/19/2005). We used the XMLTV util-
ities8 to retrieve the schedules and we augmented the
annotation with data from the Internet Movie Data-
base9. This resulted 29,975 programs, organized in sep-
arate XML files that follow the XMLTV DTD format.
The each program had a total of 12 facets (actor, cate-
gory, channel name, commentator, description, director,
guest, presenter, showtime, title, writer). After process-
ing the different fields, we extracted a total of 58,702
keywords.

• DMOZ: This set contains real web pages from Open Di-
rectory10, manually classified by human editors in a man-
ually created hierarchy. To run extensive experiments
keeping the running times manageable, we restricted our
data set to a random sample of 19,392 pages from the
“Health” and “Science” top-level categories. Each page
contains a human-edited title and description, as well as
the actual text in the web page11. After processing the
different fields, we extracted a total of 80,810 keywords.

6.2 Effectiveness of Facet Extraction
We evaluated our facet extraction algorithm of Section 3

using the keywords from the Corbis data set. For classifier we
used Support Vector Machines (SVM) with linear kernels.

Initially, we tested the accuracy of the classifier without us-
ing the WordNet hypernyms and without using the keywords
associated with the same image. The classifier, as expected,
could not generalize. The accuracy (as measured by the F1-
measure) was 10%, only slightly above the accuracy of a ran-
dom classifier. By adding the hypernyms, the performance im-
proved considerably, reaching an average F1-measure of 71%
(detailed results omitted due to space constraints.) This im-
provement confirmed our hypothesis that hypernyms are use-
ful features for allocating keywords to facets. Nonetheless, the
sense ambiguity is still a problem in this case: after adding as
extra features the remaining keywords from each document,
the classification performance improved considerably, reaching
an average F1-measure of 81% (see Table 1).

We also wanted to compare our method against variations
of other techniques. One hypothesis was that we can create
facets by picking some high-level hypernyms from WordNet,
which can serve as root nodes for the corresponding facets. For
example, the term “animal/fauna” in WordNet could serve as
the root node for the “Animal” facet. Subsequently, all terms
that have “animal/fauna” as a hypernym could be assigned to
the “Animal” facet. (This approach would be close in spirit
with the hierarchy construction algorithm in [31].) To test
the accuracy of this approach, we trained RIPPER [4], a rule-
based classifier, using the keywords and their hypernyms as

7http://www.rcn.com
8http://membled.com/work/apps/xmltv
9http://www.imdb.com

10http://www.dmoz.org
11We kept only the text from each page by stripping the HTML
tags using the “lynx –dump” command.

Class Precision Recall F1-measure
GTH 87.70% 83.00% 85.29%
APA 75.80% 75.80% 75.80%
ATT 78.20% 83.50% 80.76%
ABC 85.20% 87.60% 86.38%
GCF 74.70% 76.76% 75.72%
NCF 82.40% 87.57% 84.91%
GTF 86.70% 75.00% 80.43%
GPL 81.70% 90.10% 85.69%
ATY 80.00% 81.30% 80.64%
GEV 79.40% 56.30% 65.88%
GAN 92.90% 92.90% 92.90%
RPS 85.60% 76.30% 80.68%
NTF 82.40% 80.30% 81.34%
NORG 75.40% 76.58% 75.99%
Average 82.01% 80.22% 80.89%

Table 1: The average performance of the facet ex-
traction technique for each of the 14 facets in the
Corbis data set. (Results obtained using 10-fold cross-
validation.)

2.6

2.8

3

3.2

3.4

3.6

3.8

4

t_s

speedup

0.7 0.8 0.9

Figure 2: The speedup of the our hierarchy construc-
tion algorithm over the basic subsumption algorithm,
for different values of the subsumption threshold τs,
for the DMOZ dataset and for τd = 1.2.

features. The average F1-measure in that case was close to
55%, significantly worse than the corresponding results for
SVMs. The results also highlighted that some classes work
well with simple, rule-based assignments of terms to facets,
but there are other classes that need more elaborate classifiers.
For example, for the facet GAN (Generic ANimals) the rule-
based classifier resulted in an F1-measure of 93.3%, showing
that simple rules work well for this facet. However, for the
APA facet (Action, Process, or Activity) the F1-measure was
only 35.9%, showing that simple rules do not work well for
such a complicated facet.

6.3 Efficiency of Hierarchy Construction
We ran an extensive set of experiments examining the effect

of the different parameters of our technique on the running
time of the algorithm.

Initially, we examined the speedup obtained after eliminat-
ing from consideration terms with low frequency in the col-
lection (less than a threshold τf). We observed that the time
required for constructing the hierarchies decreased exponen-
tially with the threshold τf . Based on these results about the
quality of the hierarchies, we decided to set τf = 16, which
resulted in efficient executions and good quality of the hierar-
chies (see Section 6.4).

Then, we examined the effect of the thresholds τs and τd

(see Definition 4.1 in Section 4) on the efficiency of our al-

http://www.rcn.com
http://membled.com/work/apps/xmltv
http://www.imdb.com
http://www.dmoz.org

τd

DataSet 1.0 1.2 1.5 2.0
Corbis 24.3 (43%) 18.1 (52%) 19.5 (54%) 21.9 (54%)
XMLTV 8.5 (30%) 6.4 (37%) 7.8 (39%) 8.2 (39%)
DMOZ 10.4 (0.4%) 10.2 (1.4%) 11.4 (1.9%) 11.8 (1.9%)

Table 2: The time required to build a concept hier-
archy (in minutes) as a function of the directionality
threshold τd (τs = 0.8). In parentheses the percent-
age of the terms that were matched as “equivalent”
during the “LocateEquivalent” step.

DataSet Frequency Set-cover Merit-based
Corbis 0.835 0.924 0.898
XMLTV 0.812 0.931 0.900
DMOZ 0.627 0.749 0.713

Table 3: The average coverage of the collection, for
the different data sets and different ranking methods.
(τs = 0.8, τd = 1.2)

gorithm. We observed that execution time decreases as the
subsumption threshold τs becomes smaller. This was an ex-
pected outcome according to Lemma 4.1: small values of τs

disallow the formation of subsumption relations between terms
with similar frequencies.

The effect of the directionality threshold τd is more mixed
(see Table 2). Large values of τd force the algorithm of Fig-
ure 1 to perform more comparisons to locate equivalent terms,
slowing the execution of the “LocateEquivalent” procedure.
However, large values of τd identify more “equivalent” terms,
which in turn reduces considerably the number of terms used
by the “CreateEdges” procedure. In our data sets, we identi-
fied a value of τd ≈ 1.2 to be a good choice, a choice reinforced
by the experiments of Section 6.4.

Finally, Figure 2 shows the speed improvement of our al-
gorithm over the basic subsumption algorithm, for different
values of τs and τd = 1.2, for the DMOZ data set. For the
value τs = 0.8, the algorithm runs 3 times faster than the
basic subsumption algorithm. The speedups are higher for
the XMLTV and Corbis datasets that benefit more from the
reduction of nodes from the “LocateEquivalent” step of our
algorithm of Figure 1. (See Table 2 for the statistics.)

6.4 Structural Evaluation of Hierarchies
Beyond efficiency, another important aspect of hierarchy

construction is the quality of the generated hierarchies. For
this purpose, we examined the structural properties of the
generated hierarchies and examined how these properties can
affect the browsing experience. In the future we plan to con-
duct a study of the user interface using human subjects, but
the results of such a study are out of the scope of this paper.
(See Section 6.5 for some anecdotal results.) We examined the
following properties of the generated hierarchies:
Coverage: We define coverage as the fraction of the collection
objects that are reachable using the hierarchy. Unreachable
objects are those annotated only with terms that do not ap-
pear in the hierarchy. The perfect hierarchy has coverage is
equal to 1, allowing the user to reach all objects of the hier-
archy. We used coverage as one of the metrics to evaluate the
ranking schemes of Section 5. We show the results in Table 3
for τs = 0.8 and τd = 1.2 and after selecting 10 categories per
node. (The results were similar for other values of the thresh-
olds.) While all methods achieve a relatively good coverage,
the set-cover method (as expected) consistently covers larger
fraction of the collection compared to the other two methods.

DataSet Frequency Set-cover Merit-based
Corbis 42.99 30.62 22.05
XMLTV 33.57 29.69 26.98
DMOZ 40.61 39.78 35.30

Table 4: The average cost for reaching an object us-
ing hierarchies created by different ranking methods,
computed using Equation 2 (κ = 1, Pe(·) = 0.2).

The merit-based method performs slightly worse than the set-
cover, an expected result since set-cover is explicitly designed
to optimize the coverage of the hierarchy.
Cost: In addition to coverage, we also measured additional
structural characteristics of the hierarchy, such as the average
path length to find an object (shorter paths are preferable),
and the average branching factor (small branching factors are
preferred, since users can decide faster which category is best).
Since configurations that optimize average path length tend
to have larger branching factors, we decided to use the cost
metric from Section 5.3 to combine meaningfully these met-
rics. Table 4 summarizes the results. Merit-based hierarchies
consistently perform better than the other two approaches, de-
creasing by 10-50% the time needed to locate items of interest,
compared to the other approaches.
Conclusions: In general, merit-based performs very well and
offers fast access to the contents of the collection. Addition-
ally, merit-based rankings are efficient to implement on top
of relational database systems, while the set-cover rankings
typically take longer to compute.

6.5 Further Discussion
To experience first-hand the quality of the hierarchies, we

built a hierarchy browser and we used it to explore the contents
of multiple collections. We also experimented with different
methods for presenting the hierarchies (e.g., using RSVP tech-
niques for text [9]) but analyzing the user interface is out of
the scope of this paper.

Our informal results suggest that keyword extraction is vi-
tal for generating good quality hierarchies. For example, for
the Corbis and XMLTV data sets, the objects contained high-
quality keywords that in turn helped generate high-quality
hierarchies that were informative and easy to use. For the
DMOZ dataset, the quality of the hierarchies depended on
the quality of the textual content in each web page. Web
pages with little or no quality text were difficult to charac-
terize properly and, correspondingly, difficult to organize in
a hierarchy. We believe that more advanced techniques for
keyword indexing (e.g.,[32, 13] for text or [1, 14] for images)
and standard techniques for web indexing (e.g., use of anchor
text) can substantially improve the hierarchies.

7. RELATED WORK
Several methods have been proposed for browsing collec-

tions of text or multimedia documents. Scatter/Gather [6]
demonstrated that clustering can be used for browsing large
collection of text documents. Multiple methods (e.g., [34, 2,
23]) have been proposed for clustering text and web data. The
difficulty of meaningfully labeling the clusters led to the intro-
duction of concept hierarchies: Sanderson and Croft [30] intro-
duced the subsumption hierarchies and Lawrie and Croft [18]
showed experimentally that subsumption hierarchies outper-
form lexical hierarchies [25, 26, 27]. Lawrie et al. [17, 19]
suggested a technique for identifying terms that are useful for
hierarchy construction. The algorithm in [17] is similar to the

algorithm used by the set-cover ranking. The main difference
is the optimization goal: set-cover tries to optimize the cov-
erage of the collection from the hierarchy, while the algorithm
in [17] tries to maximize the (weighted) coverage of the collec-
tion vocabulary.

Kominek and Kazman [15] use the hierarchical structure of
WordNet [8] to offer a hierarchy view over the topics covered
in videoconference discussions. Stoica and Hearst [31] also use
WordNet together with a tree-minimization algorithm to cre-
ate an appropriate concept hierarchy for a collection. Barnard
et al. [1] used WordNet to disambiguate the keywords associ-
ated with each image, and to generate clusters of higher qual-
ity. As an alternative to creating a separate hierarchy for each
collection, Chaffee and Gauch [3] presented a system that uses
a personalized ontology to offer a common browsing experience
across collections of web pages (i.e., web sites) that organize
their contents in different ways. Other, less common browsing
structures were proposed (e.g., wavelet-based text visualiza-
tion [24], dynamic document linking [10]) but clustering and
hierarchy-based approaches continue to be the most popular
interfaces for browsing.

Faceted interfaces, which use multiple, orthogonal classi-
fication schemes to present the contents of a database, be-
come increasingly popular. A large number of e-commerce
web sites use faceted interfaces [16], based on engines provided
by companies such as Endeca12 and Mercado13, which expose
the facets that are already defined for the products (e.g., “by
price,” “by genre” and so on). Academically-developed sys-
tems, such as Flamenco [33], HiBrowse [28], and OVDL [22],
demonstrated the superiority of faceted interfaces over single
hierarchies. Our work on automatic construction of multi-
faceted interfaces contributes to this area and facilitates the
deployment of faceted databases. In an orthogonal direction,
Ross and Janevski [29] presented work on searching faceted
databases and described an associated entity algebra and an
query engine.

8. CONCLUSION
We presented methods for automatically constructing mul-

tifaceted hierarchies, and methods for selecting the best parts
of the generated hierarchies when it is not possible to fit all the
categories on screen. Our experiments with real-life data sets
indicate that automatic construction of multifaceted interfaces
is feasible, and generates high-quality hierarchies. We are in-
terested in exploring different ways of presenting the hierar-
chies to expose the contents of the collection in efficient ways.
Furthermore, we are interested in integrating better browsing
and searching in multifaceted databases. Creating the appro-
priate indexing structures to support concurrent searching and
browsing is a promising direction for future research.

Acknowledgements
The authors would like to thank Gavin Smyth of Microsoft
Research Cambridge for his work on the implementation of
the hierarchy browser.

9. REFERENCES
[1] K. Barnard, P. Duygulu, and D. A. Forsyth. Clustering art. In

CVPR, pages 434–441, 2001.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In WWW6, pages 1157–1166,
1997.

12http://www.endeca.com
13http://www.mercado.com

[3] J. Chaffee and S. Gauch. Personal ontologies for web navigation.
In CIKM, pages 227–234, 2000.

[4] W. W. Cohen. Fast effective rule induction. In ICML, pages
115–123, 1995.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

[6] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey.
Scatter/Gather: A cluster-based approach to browsing large
document collections. In SIGIR, pages 318–329, 1992.

[7] S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive
learning algorithms and representations for text categorization. In
CIKM, pages 148–155, 1998.

[8] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT
Press, May 1998.

[9] M. Goldstein, G. Öqvist, M. Bayat-M, P. Ljungstrand, and
S. Björk. Enhancing the reading experience: Using adaptive and
sonified RSVP for reading on small displays. In Mobile HCI, 2001.

[10] G. Golovchinsky. Queries? Links? Is there a difference? In CHI,
pages 407–414, 1997.

[11] V. Hatzivassiloglou, L. Gravano, and A. Maganti. An
investigation of linguistic features and clustering algorithms for
topical document clustering. In SIGIR, pages 224–231, 2001.

[12] M. A. Hearst and J. O. Pedersen. Rexamining the cluster
hypothesis: Scatter/Gather on retrieval results. In SIGIR, pages
76–84, 1996.

[13] A. Hulth. Reducing false positives by expert combination in
automatic keyword indexing. In RANLP, pages 367–376, 2003.

[14] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image
annotation and retrieval using cross-media relevance models. In
SIGIR, pages 119–126, 2003.

[15] J. Kominek and R. Kazman. Accessing multimedia through
concept clustering. In CHI, pages 19–26, 1997.

[16] K. La Barre. Adventures in faceted classification: A brave new
world or a world of confusion? In ISKO, 2004.

[17] D. Lawrie, W. B. Croft, and A. Rosenberg. Finding topic words
for hierarchical summarization. In SIGIR, pages 349–357, 2000.

[18] D. J. Lawrie and W. B. Croft. Discovering and comparing
hierarchies. In RIAO, pages 314–330, 2000.

[19] D. J. Lawrie and W. B. Croft. Generating hierarchical summaries
for web searches. In SIGIR, pages 457–458, 2003.

[20] D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training
algorithms for linear text classifiers. In SIGIR, pages 298–306,
1996.

[21] C. D. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[22] G. Marchionini and G. Geisler. The Open Video Digital Library.
D-Lib Magazine, 8(12), Dec. 2002.

[23] M. Meila and D. Heckerman. An experimental comparison of
several clustering and initialization methods. Machine Learning,
42(1/2):9–29, 2001.

[24] N. E. Miller, P. C. Wong, M. Brewster, and H. Foote. Topic
islands: A wavelet-based text visualization system. In VIS, pages
189–196, 1998.

[25] C. G. Nevill-Manning, I. H. Witten, and G. W. Paynter.
Lexically-generated subject hierarchies for browsing large
collections. International Journal on Digital Libraries,
2(2-3):111–123, 1999.

[26] G. W. Paynter and I. H. Witten. A combined phrase and
thesaurus browser for large document collections. In ECDL, pages
25–36, 2001.

[27] G. W. Paynter, I. H. Witten, S. J. Cunningham, and
G. Buchanan. Scalable browsing for large collections: A case
study. In ACM DL, pages 215–223, 2000.

[28] A. S. Pollitt. The key role of classification and indexing in
view-based searching. In IFLA, 1997.

[29] K. A. Ross and A. Janevski. Querying faceted databases. In
Proceedings of the Second Workshop on Semantic Web and
Databases, 2004.

[30] M. Sanderson and W. B. Croft. Deriving concept hierarchies from
text. In SIGIR, pages 206–213, 1999.

[31] E. Stoica and M. A. Hearst. Nearly-automated metadata
hierarchy creation. In HLT-NAACL: Short Papers, pages
117–120, 2004.

[32] P. D. Turney. Learning algorithms for keyphrase extraction.
Information Retrieval, 2(4):303–336, 2000.

[33] K.-P. Yee, K. Swearingen, K. Li, and M. A. Hearst. Faceted
metadata for image search and browsing. In CHI, pages 401–408,
2003.

[34] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to
cluster web search results. In SIGIR, pages 210–217, 2004.

http://www.endeca.com
http://www.mercado.com

	1 Introduction
	2 Background
	3 Automatic Facet Extraction
	4 Fast Hierarchy Construction
	4.1 Subsumption Hierarchies
	4.2 Efficient Hierarchy Construction
	4.3 Extracting Terms

	5 Ranking Categories
	5.1 Frequency-based Ranking
	5.2 Set-cover Ranking
	5.3 Merit-based Ranking

	6 Experimental Results
	6.1 Data Sets
	6.2 Effectiveness of Facet Extraction
	6.3 Efficiency of Hierarchy Construction
	6.4 Structural Evaluation of Hierarchies
	6.5 Further Discussion

	7 Related Work
	8 Conclusion
	9 References

