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ABSTRACT
The emergence of online crowdsourcing services such as Ama-
zon Mechanical Turk, presents us huge opportunities to dis-
tribute micro-tasks at an unprecedented rate and scale. Un-
fortunately, the high verification cost and the unstable em-
ployment relationship give rise to opportunistic behaviors of
workers, which in turn exposes the requesters to quality risks.
Currently, most requesters rely on redundancy to identify the
correct answers. However, existing techniques cannot separate
the true (unrecoverable) error rates from the (recoverable)
biases that some workers exhibit, which would lead to in-
correct assessment of worker quality. Furthermore, massive
redundancy is expensive, increasing significantly the cost of
crowdsourced solutions.

In this paper, we present an algorithm that can easily sepa-
rate the true error rates from the biases. Also, we describe
how to seamlessly integrate the existence of “gold” data for
learning the quality of workers. Next, we bring up an ap-
proach for actively testing worker quality in order to quicky
identify spammers or malicious workers. Finally, we present
experimental results to demonstrate the performance of our
proposed algorithm.

1. INTRODUCTION
Crowdsourcing has emerged over the last few years as an

important new labor pool for a variety of tasks[4], ranging from
micro-tasks on Mechanical Turk to big innovation contests
conducted by Netflix and Innocentive. Amazon Mechanical
Turk (AMT) today dominates the market for crowdsourcing
micro-tasks that are trivial to humans, but challenging to
computer programs. The requesters can post tasks, such as
image tagging, language translation, event annotation, and
workers complete them and get compensated in the form of
micro-payments. The tremendous potential for labor supply
makes it possible to get tasks done very quickly.

Despite the promise, significant challenges remain. Since
it is unlikely that requesters can verify the quality of every
submitted answer manually and the employer-employee rela-
tionship between requesters and workers are usually one-time,
workers have incentives to give crappy answers with almost
no effort. The presence of spammers or malicious workers
undoubtedly harms the scalability and robustness of online
markets, which makes effective spammer detection mecha-
nisms very valuable.

One commonly known approach for dealing with this prob-
lem is to use “gold” data. Typically, employers insert a small
percentage of questions for which they already know the an-
swers into their tasks, and see how the performance of workers.
Another solution is to rely on repeated labeling: simply ask
multiple workers to complete the same task and use major-

ity voting to identify the correct answers. Unfortunately,
since repeated labeling is rather costly, this would negate the
advantage of crowdsourcing.

A better use of redundancy is to identify the correct answers
of each task and measure the labeling quality of each worker at
the same time. Dawid and Skene [2] first proposed a solution
based on an expectation maximization algorithm which would
give us a “most-likely” answer for each task and a “confusion
matrix” for each worker, listing the error probabilities for the
worker. From the confusion matrix we can directly measure
the overall error rate for each worker as the sum of the non-
diagonal elements of the confusion matrix (properly weighted
by the priors): this results in a single, scalar value as the
quality score for each worker. However, this approach would
underestimate the quality of workers who give consistently
and predictably incorrect answers. The answers given by
inherently biased workers are valuable since we can extract
useful information from their seemingly low-quality labels. On
the other hand, for skewed datasets, spammers can achieve low
error rates by classifying all the examples into the majority
class.

This paper makes several contributions to the learning of
worker quality. First, we present an algorithm to separate the
unrecoverable error rate from recoverable bias. The output
of our algorithm is a scalar score representing the inherent
quality of each worker. Second, we describe how to integrate
the usage of “gold” data for learning the quality of workers and
discuss its virtues and defects. Third, we bring up an active
testing approach to decide when and how to test workers
using an expected utility framework. Finally, we show on
synthetic data that our strategy outperforms the commonly
used, non-active strategies.

2. RELATED WORK
The widespread of spammers makes it necessary to design

some mechanism which can accurately estimate the worker
quality and reject or block low-quality workers accordingly.

To measure the quality of the workers, we can insert some
tasks with “gold” labels into the stream of assigned HITs,
and then compute the error rate of each worker to detect
the spammers. When the true label is not available or very
expensive to acquire, a common approach is to elicit multiple
labels from imperfect labelers. Sheng et al. [6] talked about
how to do repeated labeling in a way which accounts for both
label uncertainty and model uncertainty. But they did not
estimate the quality of workers.

Dawid and Skene [2] presented an expectation maximization
algorithm to estimate the error rates of observers when all
observers see all available patients. Bayesian versions of the
algorithm were recently proposed by Raykar et al. [5] and



by Carpenter [1]. The algorithm iterates until convergence,
following two steps: (1) estimates the true response for each
patient, using records given by all the observers, accounting
for the error-rates of each observer; and (2) estimates the
error-rates of observers by comparing the submitted records to
estimated true response. The final output of the Dawid&Skene
algorithm is estimated true response for each patient and
estimated error-rate represented by “confusion matrix” for
each observer.

Whitehill et al. [9] presented a probabilistic model to simul-
taneously infer the label of each image, the expertise of each
labeler, and the difficulty of each image. Their assumption is
that the log odds for the obtained labels being correct are a bi-
linear function of the difficulty of the label and the expertise of
the labeler. Welinder et al. [8] proposed a generative Bayesian
model in which each annnotator is a multidimensional en-
tity with variables representing competence, expertise and
bias. They also described an inference algorithm to estimate
the properties of the data being labeled and the annotators
labeling them.

The common objective across all the approaches above is
that they only estimate error rate for each worker. Unfortu-
nately, as we will see, the error-rate alone cannot sufficiently
measure the underlying value of a worker.

3. WORKER QUALITY ESTIMATION: THE
BASICS

3.1 Notations
The task in our case is a multiple choice question. There

are N objects, o1, . . . , oN , each being associated with a latent
true class label T (on), picked from one of the L different
labels. Each object is annotated by one or more of the K
workers, each having a varying degree of quality. To measure
the quality of each worker, the algorithm endows each worker

(k) with a latent “confusion matrix” π
(k)
ij , which gives the

probability that worker (k), when presented with an object in
class i, will classify the object into class j.

3.2 EM Algorithm
Algorithm 1 presents a sketch of the process. The algorithm

iterates between estimating the correct labels T (on) for each of

the objects, and estimating the error rates π
(k)
ij for each worker.

Note here, we relax the assumption that all the objects are
labeled by all the available workers. So in each iteration, we
only consider relevant variables when updating the estimates.

3.3 Limitations
The algorithm works well when we are only interested in

the error rate π
(k)
ij for each worker. However, it provides

insufficient information when our objective is to reject or
block workers accordingly. A naive method is to simply sum
up the non-diagonal entries of the matrix π(k), weighting each
error rate by the estimated prior of each class. Unfortunately,
this approach would wrongly reject biased but careful workers.
For example, consider the following example:

Example 1. Consider two workers that label web sites into
two classes: porn and notporn. Worker A is always incorrect:
labels all porn web sites as notporn and vice versa. Worker
B classifies all web sites, irrespectively of their true class, as
porn. Which of the two workers is better? A simple error
analysis indicates that the error rate of worker A is 100%,

Input: Labels l[k][n] from worker (k) to object on,

Output: Confusion matrix π
(k)
ij for each worker (k), Correct

labels T (on) for each object on, Class priors Pr{C}
for each class C

1 Initialize error rates π
(k)
ij for each worker (k) (e.g., assume each

worker is perfect);
2 Initialize correct label for each object T (on) (e.g., using

majority vote);
3 while not converged do
4 Estimate the correct label T (on) for each object, using the

labels l[·][n] assigned to on by workers, weighting the votes

using the error rates π
(k)
ij ;

5 Estimate the error rates π
(k)
ij , for each worker (k), using

the correct labels T (on) and the assigned labels l[k][n];
6 Estimate the class priors Pr{C}, for each class C;
7 end

8 return Estimated error rates π
(k)
ij , Estimated correct labels

T (on), Estimated class priors Pr{C}
Algorithm 1: The EM algorithm for worker quality estima-
tion.

while the error rate of worker B is “only” 50%.1 However, it
is easy to see that the errors of worker A are easily reversible,
while the errors of worker B are irreversible. In fact, worker
A is a perfect worker, while worker B is a spammer. 2

So, naturally a question arises: How can we separate low-
quality workers from high-quality, but biased, workers? On
the other hand, strategic spammers can easily avoid detection
by classifying almost all the examples into the majority class,
especially when the dataset is highly imbalanced.

Example 2. Consider the same problem as before, but with
a skewed class distribution: 95% of the web sites fall in the
category of notporn, while only 5% of the web sites are porn.
A strategic worker C classifies all web sites, irrespectively of
their true class, as notporn. By doing so, he can achieve a
low error rate of 5%, and will be considered as a high quality
worker if we employ the simple error analysis. 2

So another question arises: How can we identify the strategic
spammers? We examine these questions next.

4. SEPARATING ERROR AND BIAS
After running the EM algorithm, we have some reasonably

accurate estimates of the error rates π
(k)
ij for each worker.

How can we estimate from these values the intrinsic, non-
recoverable error rate?

We start with the following observation: Each worker assigns
a “hard” label to each object. Using the error rate for this
worker, we can transform this assigned label into a “soft” label,
which is the best possible estimate that we have for the true
label assignment. So, if we have L possible classes and the
worker assigns class j as a label to an object, we can transform
this “hard” assigned label into the “soft” label:〈

π
(k)
1j · Pr{C = 1}, . . . , π(k)

Lj · Pr{C = L}
〉

(1)

where π
(k)
ij is the probability that worker (k) classifies into

class j, an object that in reality belongs to class i, Pr{C = i} is
the prior that the object will belong to class i. We should note
that the quantities above need to be normalized by dividing

1Assume, for simplicity, equal priors for the two classes.



them with

Pr{AC = j} =

L∑
i

π
(k)
ij · Pr{C = i} (2)

the probability that worker (k) assigns label j to any object.

Example 3. Take the case of worker A from the previous
example. When this worker assigns a label of Porn (assume
that porn is class 1), then the corresponding soft label has all
the “probability mass” in the NotPorn category:(

1
0

)
︸ ︷︷ ︸

Assigned: Porn

⇒
(

0
1

)
︸ ︷︷ ︸

Corrected to: NotPorn

On the contrary, for worker B, who always assigns porn,
the corresponding corrected soft label does not give us any
information; the soft label simply says that the best guess are
simply the class priors:(

1
0

)
︸ ︷︷ ︸

Assigned: Porn

⇒
(
Pr{C = 1}
Pr{C = 2}

)
︸ ︷︷ ︸

Corrected to: Class priors

2

So, what can we do with these soft labels? The basic idea
is to estimate the expected cost of a soft label. To estimate the
cost of a soft label, we need to consider the misclassification
costs. In the simplest case, we have a cost of 1 when an object
is misclassified, and 0 otherwise. In a more general case, we
have a cost cij when an object of class i is classified into
category j.

Lemma 1. Given the classification costs cij and a soft label
p = 〈p1, p2, . . . , pL〉, the expected cost of the soft label p is:

ExpCost (p) =

L∑
i=1

L∑
j=1

pi · pj · cij (3)

2

The proof is rather simple. The expected classification cost
is equal to the probability of classifying the object in class
i (which is pi), multiplied by the probability of the object
belonging to class j in reality (which is pj), multiplied with
the associated cost of classifying an object of class j into class
i (which is cji). Summing across all classes, we have the result
above.

The expected cost of a soft label reveals how much informa-
tion we can get from a particular assigned label by a worker.
Therefore, it is valuable in helping us assess the usefulness
of workers. However, we should notice that this is not the
minimum cost we would have, given the knowledge of the soft
label. We call the cost incurred by always assigning the exam-
ple to the class which yields the minimum cost the minimized
cost of a soft label. The minimized cost can help us make
the best decision of classification in single labeling. However,
as explained later, it does not have some nice properties of
expected cost.

Lemma 2. Given the classification costs cij and a soft label
p = 〈p1, p2, . . . , pL〉, the expected cost of the soft label p is:

MinCost (p) = min
1≤i≤L

L∑
j=1

pj · cij (4)

2

Input: Error rates π
(k)
ij for each worker, Misclassification costs

c[i][j], Class priors Pr{C}
Output: Expected for each worker

1 foreach Worker (k) do
2 Estimate how often the worker (k) assigns label l

(Pr{AC = l}), using Eq. 2;
3 Cost[k] = 0;
4 foreach Label l, assigned with probability Pr{AC = l} do
5 Using Eq. 1, compute the soft label soft(k)(l) that

corresponds to label l assigned by worker (k);

6 Using Eq. 3, compute Cost(soft(k)(l)) for the soft
label;

7 Cost [k] += Cost(soft(k)(l)) · Pr{AC = l};
8 end

9 end
10 return Cost [k] for each worker (k)

Algorithm 2: Estimating the Expected Cost of each Worker

The results illustrate that workers with error rate matrices
that generate “soft” labels with probability mass concentrated
into a single class (i.e., certain “posterior” labels) will tend to
have low estimated cost, as the product of Equation 3 will
be close to 0. On the contrary, workers that tend to generate
“soft” labels that are spread out across classes (i.e., uncertain
“posterior” labels) will tend to have high associated costs.

Example 4. Consider the costs for the workers A and B
from the previous examples. Assuming equal priors across
classes, and cij = 1, if i 6= j and cij = 0, if i = j, we have
the following: The cost of worker A is 0, as the soft labels
generated by A are 〈0, 1〉 and 〈1, 0〉. For worker B, the cost
is 0.5 (the maximum possible) as the soft labels generated by
B are all 〈0.5, 0.5〉 (i.e., highly uncertain). 2

Given that we know how to compute the expected cost
for each label, we can now easily estimate the expected cost
for each worker. We first compute the priors Pr{AC = i}
(see Equation 2), which is the prior probability of the worker
assigning label i to an object. Then we compute the“soft label”
that corresponds to the assigned label (see Equation 1). Given
the soft label, we use Equation 3 to compute its expected cost.
Now, knowing how often the worker assigns a label and the
expected cost, we can compute the average expected cost of
each worker. Algorithm 2 illustrates the process.

As expected, perfect workers will have a cost of zero and
random workers or spammers will have high expected costs.
Notice, as illustrated in the example above, that it is not
necessary for a worker to return the correct answers in order
to have low costs! As long as the errors are predictable and
reversible, the worker is assigned a low expected cost.

This tends to resolve quite a few issues with online workers
that exhibit systematic biases in their answers but also put a
lot of effort in coming up with the answers. Prior approaches
that relied on agreement generate a significant number of
rejections for such workers, which in turn alienates such high-
quality workers, and discourages them from working with
employers that rely on worker agreement. The proposed
algorithm alleviates these concerns.

We define a spammer as a worker who always assigns la-
bels randomly, regardless of what the true class is. The
quality score of a worker is computed by comparing his ex-
pected cost with the cost of a spammer: QualityScorei =
1− ExpCosti

ExpCostspammer
. We can also compute the quality score

based on minimized cost in the same way. Our results indicate
that the two give pretty similar results.



5. GOLD DATA VS. REPEATED LABELING
One virtue of the previous algorithm is that it can seamlessly

integrate the existence of “gold” data for learning the quality
of labelers. It is a trivial change in the algorithm (i.e., do
not update the true class of the “gold” examples, in Step 4 of
Algorithm 1). We’ll show next how the gold data can help to
improve significantly the estimation accuracy in the case of
sparse data.

5.1 Synthetic Experiments
The experimental setup is: we have a set of examples,

equally assigned to two categories; a set of workers, with their
quality (the sum of diagonal elements of the confusion matrix)
ranges uniformly from 0.55 to 0.95. Since potential bias can
be easily separated from error using our algorithm, we do
not assume any biased workers here. Also, the qualities of
workers are class-independent. We examine how accurately
the algorithm can estimate:

• Average classification error

• Average cost estimation error

We conducted a set of synthetic experiments, in order to
have the flexibillity of controlling the composition of the data
set. We vary the fraction of gold data across four levels: 0%
known examples, 25% known examples, 50% known examples,
and 75% known examples. The three levels of data sparsity
are 3 workers per example, 5 workers per example, and 10
workers per example, respectively.

The estimation results for average classification error are
shown in Figure 1. As expected, the introduction of gold
data indeed reduces the classification error to a certain degree.
However, data sparsity acts as an important moderating vari-
able here. When there are only 3 workers per example, we see
a significant decrease on the classification errors. But with 10
workers per example, the gain is minimal, even with 75% gold
data. An interesting finding is that, we can achieve the same
performance by simply forcing workers to label more examples.
When each worker can label 30 examples, the unsupervised
algorithm works almost as well as the algorithm that uses
75% gold data, regardless of the data sparsity.

Figure 2 shows the results for average cost estimation error.
The average cost estimation error for 100% known examples
is displayed as a minimum bound for cost estimation. Simi-
larly, data sparsity moderates the benefits of gold data. The
improvement on cost estimation error is apparent when there
are 3 workers per example, but negligible when there are 10
workers per example.

5.2 The Virtues of Gold Data
The experimental results above show us “the power of

crowds”. It seems that all the benefits that we gain from
gold data can be realized by acquiring more labels from work-
ers. However, several reasons make gold data still valuable in
reality.

• Worker attrition: In real-life crowdsourcing systems,
it is not always possible to force workers to label a
large number of examples since workers might lose their
patience for doing the same thing over and over again.

• Imbalanced datasets: For very imbalanced datasets,
the probability that one example is from the minority
class is extremely small. Therefore, we need a large
number of unknown examples to ensure a relatively
accurate estimate of worker quality, across all possible
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Figure 1: Average classification error

categories. The presence of gold data makes it possible
to quickly test workers using data from all categories,
rather than waiting for the occasional example from the
minority category to appear.

• Low quality of workers: AMT marketplace is a high-
noise environment where low-quality workers like spam-
mers are prevalent. Having a large number of such
low-quality workers would make the estimation much
more challenging. If we have some gold data in hand,
we can get rid of this kind of workers quickly.

• Calibrating results (“consistent bias”): One as-
sumption for the previous experiments is that there
are all the workers have no systematic bias. But if we
happen to have a set of workers that are biased in the
same direction, we may end up with results that are
consistent but biased. However, if the employer can
provide a few gold data as anchor points, the estimation
algorithms can adjust for the bias accordingly.

6. ACTIVE TESTING FOR WORKER QUAL-
ITY USING GOLD LABEL

So far, we assumed that the number of examples that we
use for testing a worker is a predetermined fraction of the total
number of labels annotated by each worker. However, this
is unnecessarily costly. As previous results demonstrate, the
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Figure 2: Average cost estimation error

addition of one more label has diminishing marginal return.
However, we can always get some information from asking
the worker to label a new example. Hence, there has to be a
state where the gain that we expect from asking the worker
to label a “gold” example, conditional on his expected lifetime,
is no more than the gain from labeling a new example. In this
section, we consider how to learn worker quality in a more
active way. To make the illustration simple and clear, we start
from the case of testing using gold label when we have only
one worker.

The procedure goes as follows: When a worker comes, we
first compute his expected cost based on his current “confusion
matrix”. Then, we use some techniques to predict his expected
cost after giving him an additional gold example to label. Since
we probably end up with different expected costs by feeding
the worker with gold examples in different classes, we can
choose the one which yields the lowest expected cost. If we
have no label for an example, it is equivalent to have a label
given by a spammer defined previously. The expected utilities
from testing and labeling a new example are given below:

• Testing:

(ExpCostcurrent −minExpCostafter testing)

×LifeT ime Remaining
(5)

• Labeling a new example:

(ExpCostspammer − ExpCostcurrent) (6)

Having the expected utilities in hand, we can make our
testing decisions accordingly: if the number in Equation 5
is larger than the number in Equation 6, we allocate a gold
example in class that yields minimum expected cost after
testing to the worker; otherwise, we give a new example to
him.

So how can we predict the expected cost of the worker after
testing? We explore this question next.

6.1 Dirichlet and Dirichlet Compound Multi-
nomial Distribution

When presented with an example in class i, the probability
vector of the assigned label follow a Dirichlet distribution
Dir(αi) where αi = (αi1, . . . , αiJ), given that the worker has
classified the examples in class i into class j for αij − 1 times
in the past. So the quality of a worker can be fully captured
by a set of Dirichlet distributions. Now suppose that we are
going to test the quality of this worker for examples whose
true class is i by feeding him ni examples in class i. Then,
the probability of samples xi (the worker would classify the
testing examples into each class), given the parameter vector
αi, follows a Dirichlet compound multinomial distribution.
The probability can be calculated by the following explicit
formula:

Pr(xi|αi) =
ni!∏

k(nik)!

Γ(
∑

k αik)

Γ(ni +
∑

k αik)

∏
k

Γ(nik + αik)

Γ(αik)

where Γ represents the gamma function, nik is the number of
times that the assigned label is k.

6.2 Expected Worker Cost over Time
Clearly, the quality of each worker can be fully captured by

a set of Dirichlet distributions, one for each class. Also, we
can predict the future outcomes after a number of tests by a
set of Dirichlet compound multinomial distribution. So, the
question becomes: can we reduce the expected worker cost
over time by testing? If so, to what extent?

To answer this question, we conducted a synthetic experi-
ment where have J = 3 classes. We assume uniform prior for
the worker quality, which is [(Dir(1, 1, 1)Dir(1, 1, 1)Dir(1, 1, 1))]′.
We examine the change of expected cost for the worker by
varying the number of testing examples from 0 to 10 in each
class (For simplicity, we make the number of testing examples
the same across classes here).

Figure 3 illustrates how the expected cost of the worker
decreases as we increase the number of testing examples. Not
surprisingly, we see a diminishing marginal reduction for the
cost. However, since it is likely that the classification decision
given the assigned label will not change between two or more
iterations, this is not the case for minimized cost.

6.3 Optimal Allocation of Testing Examples Across
Categories

The previous experiments assume that the number of testing
examples is given for each category. Here, we talk about how
to optimally allocate testing examples based on three factors:
prior class distribution, cost matrix, and Dirichlet priors. We
assume the total number of testing examples N = 10. A brute
force strategy is used here: we exhaustively test on all possible
combinations and find the one that yields the lowest expected
cost after testing. The size of the solid balls represent the
expected cost after testing. So, the smaller the ball is, the
more benefit we gain from testing. The numbers in the text
box show the optimal allocation strategy.
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Figure 4: Optimal allocation of testing examples un-
der different prior class distributions

Figure 4 demonstrates how the variation in prior class dis-
tribution would influence the optimal allocation decision. A
straightforward conclusion is: all else being equal, we should
allocate more testing examples for the majority class. Figure 5
shows that all else being equal, we should allocate more testing
examples for classes with higher misclassification costs. From
Figure 6, we conclude that all else being equal, we should allo-
cate more testing examples for classes with smaller Dirichlet
priors.

7. TESTING STRATEGIES IN SINGLE LA-
BELING

The previous results illustrate the possible reduction in
expected worker cost that we might gain from testing by gold
data. To simply the problem, we examine the case of single
labeling. In the scenario of single labeling, the expected benefit
from testing a worker would be the reduction in worker cost,
times the expected number of labels he would give in future
(min{remaining lifetime, remaining number of examples per
worker}). However, when we test the worker with a gold
example, we forgo the opportunity to ask this worker to label
a new example. The expected benefit from labeling a new
example would be the expected cost with no information
minus the expected cost of having a label assigned by this
worker. When a worker comes, we need to decide whether
to test him or give him a new example to label. We use
the following experiments to test the performance of different
testing strategies.

7.1 Experimental Setup

Figure 5: Optimal allocation of testing examples un-
der different cost matrices

Figure 6: Optimal allocation of testing examples un-
der different Dirichlet priors

In our simulated experiment, we have 100 workers with
varying degree of qualities, each of which has infinite lifetime.
Therefore, the remaining number of examples per worker is
a proxy of the expected number of labels he would give in
future. We have three categories, whose prior probabilities
are 0.2, 0.3, and 0.5, respectively. We have a cost of 1 when
an object is misclassified, and 0 otherwise. We assume that
worker accuracy is class independent and represents the value
of diagonal element in confusion matrix. Also, the workers
have equal probability of classifying example in one category
to another two categories.

• low quality, low variance: worker accuracies are uni-
formly distributed in [0.35,0.7]

• high quality, low variance: worker accuracies are uni-
formly distributed in [0.65,1.0]

• high variance: worker accuracies are uniformly distrib-
uted in [0.35,1.0]

Our experiment goes as follows: we have a fixed budget which
is used to pay for workers. To simplify the problem, we assume
for now that a large number of gold examples are available
for us to test on the quality of workers, so it cost us almost
nothing to test a worker, except that we lose the opportunity
to get another label for a new example from him. We conduct
the experiment under four different budget levels, which allow
us to pay for 4000, 6000, 8000, 10000 HITs, respectively.

7.2 Testing Strategies



• No Testing: When a worker comes, we always give
him a new example to label. Since we invest no effort
for testing, we have no information on worker quality.

• Uniform Testing: When a worker comes, we test him
with a predefined probability using a gold example, the
true class of which is randomly chosen.

• Adaptive Testing: When a worker comes, we test
him with a predefined probability using a gold example.
However, rather than random selection, we choose a gold
example from the class which yields highest reduction
in worker cost.

• Active Testing: When a worker comes, if we predict a
higher benefit from testing, we give the worker another
gold example to label; if not, we simply assign the worker
a new example to label.

We compare different testing strategies across three dimen-
sions: number of new examples labeled, average actual loss,
and average estimated loss. The actual loss is the true cost we
incur if we assign the example to the class which minimizes our
expected cost, while the estimated loss is this minimum cost
we expect, regardless of the true class. Both actual loss and
estimated loss are computed only for newly labeled examples.

Example 5. Consider a worker A that label web sites into
porn and notporn. Suppose that when he is given a new site
and he labels it as notporn: We compute the corresponding

“soft” label (e.g. (0.6, 0.4)). The estimated loss of this label
is 0.4 since we will assign the example into porn, but there
is still 40% probability that the true class is notporn. If the
true class is porn, then the actual loss will be 0; otherwise, the
actual loss will be 1. 2

7.3 Results
The experimental results are shown in Figure 7. The x-axis

represents the average actual loss, and the y-axis is the average
estimated loss. The numbers alongside the arrows have the
form m/n, where m is the number of new examples labeled
and n is the number of HITs completed.

For No Testing strategy, the number of examples labeled
will always equal to the number of HITs completed. Since
we know nothing about the underlying worker quality, the
only thing we can do is to believe what workers said and treat
them as perfect workers. So, the estimated loss will always
be zero. Therefore, the only non-trivial information is the
actual loss we have. We make this strategy as a baseline by
putting a vertical dashed line to indicate the average actual
loss incurred under different conditions.

A perfect strategy for estimating worker cost will generate
points laying on the diagonal line. Comparing it with the
results given by different testing strategies, it is not difficult
to find that we tend to overestimate the worker cost if worker
quality is high, and underestimate the cost if worker quality is
low. This is not surprising since we only use a small number
of gold examples for testing.

There are several important messages implied in the Fig-
ure 7. First, the more we test, the better knowledge we have
for the workers, and the lower average loss we’ll suffer. Second,
we get highest gain from testing when there are significant
quality variance across workers. Third, as worker quality gets
high, Active Testing would tend to label more new examples
and use less gold examples. Fourth, Active Testing beats

Uniform Testing, using the same number of gold example.
The advantage of Active Testing is that it knows not only
where to allocate the resources, but also how many resouces
should be allocated.

Why are Active Testing so successful? One reason is that
we can adjust for the potential bias of workers. Also, since we
tend to test low-quality a lot more, we suppress the potential
bad workers from participation. Therefore, the workers who
label new examples are likely to be high-quality workers.

7.4 What if We can Block Bad Workers?
The results presented above show how much can we gain

in data quality if we account for the varying quality of work-
ers. However, we can do a lot more with the knowledge of
worker quality. Nowadays, most crowdsourcing interfaces (e.g.
AMT) allow requesters to block low-performance workers to
discourage opportunistic behaviors. In order to see the effect
of blocking, we modify our experiments by adding the follow-
ing rule: if both of the two conditions hold, we will block the
worker.

• The expected cost of a worker is higher than 0.9 times
the expected cost of a spammer (i.e.QualityScore < 0.1).

• We have tested this worker a sufficient number of times
(e.g. 5J2, where J is the number of classes) and have a
relatively high confidence of blocking.

Table 1 show the results before and after the inclusion of
rejection. Here, we only show the results for the case where
the number of HITs allowed is 1000. As expected, if we can
block bad workers, both the average true loss and estimated
loss would be lower, and we can label a larger number of new
examples. These results are pretty encouraging. Although we
did not show the evidence here, in reality, we can also give
bonus to high-performance workers to increase their propensity
to participate, as long as we have a relatively accurate estimate
for worker quality.

8. CONCLUSIONS, LIMITATIONS, AND FU-
TURE WORK

Repeated labeling has become a promising strategy since
the advent of online crowdsourcing systems. In this paper, we
first showed how to use repeated labeling not only for identi-
fying the correct answer to each task, but also for measuring
the labeling quality of each worker. Moreover, we put forward
an algorithm to differentiate between low-quality workers and
high-quality, but biased workers. Our algorithm generates a
scalar score which represents the classification cost of each
worker. We also illustrated how to seamlessly integrate unsu-
pervised and supervised techniques for inferring the quality of
the workers and test on their evaluation performances. Next,
we brought up a strategy to actively test the quality of a
worker. The experimental results show that our strategy per-
forms significantly better than the traditional passive testing
strategies.

Despite its contributions, this paper still has several limita-
tions, which might undermine its practical usefulness.

• For this study, we assume that the inherent qualities
of workers are independent. In practice, workers might
have correlated errors, either positively or negatively,
which would certainly affect the validity of our algorithm.
However, not all correlations are harmful. Previous re-
search [3] has show that negative correlation between
workers could increase the accuracy of classification re-
sults.
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Figure 7: The average actual loss and estimated loss for uniform testing, adaptive testing, and active testing
under different quality distributions

Quality Condition Block Allowed Average True
Loss

Average Esti-
mated Loss

# Examples
Labeled

#Workers
Blocked

high variance No 0.3086 0.3799 7649 0
high variance Yes 0.2848 0.3652 7834 18
low quality No 0.4624 0.4338 6879 0
low quality Yes 0.4366 0.4056 7065 41
high qualtiy No 0.1900 0.3371 8492 0
high quality Yes 0.1891 0.3373 8495 0

Table 1: Active Testing With and Without Rejection of Workers



• We assume that the error-rate of a worker is constant
across different examples. Intuitively, we might expect
that some examples are more difficult to label than
others. Wallace et al. [7] developed a novel strategy that
relies on the participating novice labelers to indicate
which examples they are likely to mislabel, and use the
experienced workers to label more difficult instances. We
did not show how to estimate the example-conditional
error-rates in our current paper.

• Our active testing strategy is only for the case when
there is only one worker per example. This, of course,
ignores the power of multiple workers. The case of
multiple workers would complicate the problem to a
large degree, for the reason that the benefit we gain
from one worker also depends on who else has labeled a
particular example.

• In this study, we assume workers have deterministic
lifetime. In reality, we might expect the lifetime of
workers are stochastic. For example, we can assume
the lifetime of a worker follows geometric or long-tailed
distribution.

The list above is probably incomplete. There still is much
to do to come up with a better way to actively learn the
qualities of workers. We hope that this study would inspire
more valuable research in this area.

The code is open source and available at http://code.

google.com/p/get-another-label/ and a demo is publicly
accessible at http://qmturk.appspot.com/.
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