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ABSTRACT
In the last decade, prediction markets became popular fore-
casting tools in areas ranging from election results to movie
revenues and Oscar nominations. One of the features that
make prediction markets particularly attractive for decision
support applications is that they can be used to answer
“what if” questions and estimate probabilities of complex
events. Traditional approach to answering such questions
involves running a combinatorial prediction market, what is
not always possible. In this paper, we present an alterna-
tive, statistical approach to pricing complex claims, which
is based on analyzing co-movements of prediction market
prices for basis events. Experimental evaluation of our tech-
nique on a collection of 51 InTrade contracts representing the
Democratic Party Nominee winning Electoral College Votes
of a particular state shows that the approach outperforms
traditional forecasting methods such as price and return re-
gressions and can be used to extract meaningful business
intelligence from raw price data.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Economics, Theory

Keywords
Prediction markets, correlation, forecasting, decision sup-
port systems, copula, dependency model

1. INTRODUCTION
In the last decade, prediction markets became popular

forecasting tools in areas ranging from election results [2]
to movie revenues and Oscar nominations [12]. The empir-
ical performance of such markets is remarkably high, and
they often outperform traditional forecasting tools, such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

polls [2]. This success led many corporations (e.g., HP [5],
BestBuy, and Google [8]) to adopt internal prediction mar-
kets for forecasting product launch dates, sales volumes, and
other important variables. Reports indicate that predic-
tion markets can serve as excellent information aggregation
mechanisms, allowing participation of employees, indepen-
dent of rank, in the decision process.

One of the features that make prediction markets par-
ticularly attractive for decision support applications is that
they can be used to answer “what if” questions. For in-
stance, Berg and Rietz show that Iowa Political Markets
for 1996 Presidential elections could have been used to in-
fer that Dole was a weak candidate against Clinton as the
Democratic nominee [3]. In a hypothetical scenario, if the
Republican party could correctly assess the probability of
Dole winning against Clinton, they might have chosen a dif-
ferent nominee (Powell). In general, there are two ways to
assess such probability using a prediction market. The first
(“direct”) approach is to let traders buy and sell combina-
torial claims, i.e., claims on combination of more than one
event. For instance, the probability of event B conditional
on event A can be derived from prices of two contracts - a
simple contract on the event A and a joint contract on both
events:

P (B‖A) =
P (A ∧B)

P (A)
.

Unfortunately, the vast majority of prediction markets
handle only non-combinatorial bids, although there are some
notable exceptions such as Yoopick [10]. One of the reasons
for that is the complexity of the auctioneer’s matching prob-
lem, which was shown to be NP-complete, if traders’ orders
are assumed to be indivisible [9]. While the matching prob-
lem becomes tractable and can be solved efficiently using a
linear programming approach [9], if the orders are allowed
to be partially accepted, it is not yet clear what effect on
liquidity and price formation can such partial acceptance
have, in particular, when the solution of the corresponding
linear program is not unique. Finally, even if such predic-
tion market is “up and running”, there is no guarantee that
the demand for complex contracts will be sufficient to deter-
mine probability of the corresponding scenario. In the worst
case, there might be demand for the claim A and the claim
B but not for the joint contract A∧B, therefore the market
will fail to establish the price of the joint claim. We con-
jecture that, while combinatorial prediction markets have
significant potential for decision support applications, there
is also strong need for an alternative, statistical technique
to pricing complex claims.



The main goal of this paper is to present a framework for
construction and evaluation of such statistical techniques,
as well as to demonstrate that they can be used to extract
meaningful business intelligence. Our framework provides a
template for building models of contemporaneous dynamics
of both claim prices as new information is revealed to the
market. The observed dynamics provides information on the
latent dependency between two events, which in turn can
be used to determine the joint probability of both events
happening.

Example 1.0.1 Consider two markets for presidential elec-
tions. The first market tracks the probability of party A win-
ning the election. The second market tracks the probability of
candidate B being the nominee for party A. If the first mar-
ket moves negatively every time the second market moves
upwards, then it is likely that the chances of party A win-
ning the election are decreased if they nominate candidate
B.

Co-movements of prediction market claims were studied
by some researchers in the past. For instance, Berg and
Rietz present regressions of the price of the Clinton’s Pres-
idential elections contract on the corresponding prices of
Dole’s and Powell’s contracts [3]. In this paper, we build
on prior research in finance, which shows that complicated
dynamics of stock returns is best modeled by separating the
marginal distributions of each stock, from the model of de-
pendency [13]. Thus, marginal-free dependency models, also
known as copulas [15], are the corner-stones of our frame-
work. In recent years, copulas gained significant popularity
for dependency modeling in areas ranging from option pric-
ing [6] to decision and risk analysis [7]. As the main contri-
bution of our paper, we show how copulas can be used to
learn dependency between prediction markets and how the
dependency learned can be used to forecast future market
evolution. Our experimental results show that copula based
techniques significantly outperform traditional forecasting
approaches such as price regressions.

The rest of the paper is organized as follows. Section 2
presents our framework for building dependency models and
gives generic algorithms for inference and forecasting in the
framework. Section 3 presents our experimental results ob-
tained for a collection of InTrade prediction markets, evalu-
ates predictive performance of the copula-based models and
shows that such models can be used to extract useful busi-
ness intelligence. Finally, Section 4 concludes the paper with
a short summary of the results.

2. FRAMEWORK
For simplicity of presentation and evaluation, we will re-

strict consideration by a hypothetical scenario with two base
events A and B; all models presented in the paper can be
easily extended to the case of more dimensions and com-
plex Boolean expressions. It is essential for our model that
both events A and B are contemporaneous, i.e., whether
the events happen or not is realized at the same moment of
time T > 0. The prediction market for corresponding claims
starts at time zero; we will use pAt to denote the time t price
of a claim that pays $1 at time T if the event A is realized
and zero otherwise; pBt represents corresponding claim for
the second event. Formally, these statements can be written
as

pAT = I(A), pBT = I(B),

Figure 1: Framework for dependency modeling

where I is the indicator function.
Our model is based on a simple idea that the observed

history of price movements will provide information on the
latent dependency between two events, which in turn can be
used to determine the joint probability of both events hap-
pening. Of course, no conclusions can be made unless suffi-
cient structure is placed onto the problem, and the choice of
structure always involves tradeoff between expressiveness of
the model and the amount of data needed to learn the model
relationships. Considering relatively short duration of an
average prediction market contract, our paper proposes the
framework displayed in Figure 1. The framework consists
of four basic components: differencing, filtering, uniformiza-
tion and dependency modeling. The components are de-
signed to be independent and pluggable, thus the framework
can easily be customized for needs of a particular applica-
tion.

2.1 Differencing
Granger and Newbold’s seminal paper on spurious regres-

sions [11] describes the following experiment. Two hundred
of independent random walks Xi

t , (i = 1..200, t = 1..50),
each of length 50, are generated. Using the traditional t
test with the 95% confidence level, the authors tested the
null hypothesis of no relationship in the regression of X2i

on X2i+1 for each i = 1..100. Amazingly, the null hypoth-
esis was rejected (wrongly) on approximately threequarters
of all occasions, instead of the anticipated 5%. One can see,
that the autoregressive behavior of observations makes sig-
nificance tests, based on the standard errors from the OLS
estimator, invalid. Moreover, even if standard errors are
corrected properly, forecasts based on the regression equa-
tions are likely to be sub-optimal due to inefficient use of
data [11].

As prices of prediction market contracts are likely to have



properties of a unit root process like the random walk, we
argue that using prices directly as modeling units is not a
good idea: statistical analysis of prices may produce results
that are spurious and decisions, based on analysis of prices
rather than price changes, should be made with caution.
Therefore, the first step of our framework is to transform
the price series pA,B1 , ..., pA,Bt to series of stationary observa-
tions and remove autoregressive behavior. We call this step
“Differencing” because of similarity to traditional stationar-
ization approaches that require taking differences to obtain
series of price changes

at = pt − pt−1

or returns

rt =
pt − pt−1

pt−1
.

Unfortunately, even if the prediction market is efficient 1,
the transformation of price series pt to return series rtis not
sufficient to achieve stationarity. The reason for that is the
finite time horizon of the market: at time T the contract
will expire. There is significant theoretical and empirical ev-
idence that unconditional distribution of returns in the pre-
diction market depends on the time to contract expiration:
in particular, out of two contracts having the same current
price, the one closer to expiration is usually more volatile [1].
Explicit dependency of the second moment of the distribu-
tion on the time to expiration is a violation of stationarity
and must be taken into account before our framework can
be applied successfully.

The solution we propose in this paper is to use the pre-
diction market volatility model of Archak and Ipeirotis [1],
who found that instantaneous volatility of prices 2 in binary
prediction markets is of the following form

Σt =
1√
T − t

φ
(
Φ−1(pt)

)
, (1)

where Φ is the distribution function and φ is the density
function of a standard normal distribution. Instead of usual
price differences or return series, we suggest using normal-
ized differences 3:

dt =
pt − pt−1

Σt−1
. (2)

Finally, less liquid prediction markets may exhibit return
predictability, so additional steps might be necessary to en-
sure absence of autoregressive behavior. For instance, one
may consider AR(p) regression of series dt on its lag:

dt = c+

p∑
i=1

ϕidt−i + ωt,

and use residuals from the model (ωt) as output of the Dif-
ferencing step.

1On a related note, Leigh and Wolfers [14] provide statisti-
cal evidence that Australian betting markets for 2004 Aus-
tralian elections were at least weakly efficient.
2Note that this expression gives the price not the return
volatility. The return volatility can be obtained as Σt

pt
3If the time interval between observations is significant com-
pared to the time to contract expiration, one should not nor-
malize by the instantaneous volatility Σt−1 but by the fore-
cast of the average expected volatility between times t − 1
and t. Refer to Theorem 3 and Equation 8 in [1].

2.2 Filtering
Stationarity does not imply independence and stationary

time series can exhibit significant dependency between ad-
jacent observations. In markets, such dependency usually
comes through conditional volatility effects, such as volatil-
ity clustering: large returns are often followed by other large
returns (not necessarily of the same sign); nevertheless, our
framework does not forbid modeling other types of relation-
ships.

We think of the market behavior in each period as being
affected by two different components: the prior history of
the market evolution (in our example, the history defines
volatility of new return as a function of prior volatility and
prior returns) and the innovation component εA,Bt represent-
ing the new shock to the market in the period t. We hypoth-
esize, that, in order to use the available data efficiently, one
should model dependency directly between the innovation
components εAt and εBt for both prediction markets, rather
than between returns that represent the mix of innovation
shocks and prior history. The main challenge here is being
able to extract the innovation component, which is not di-
rectly observable. Consistent with statistical literature, we
call this step “Filtering”, as it generally requires estimat-
ing the latent state of a dynamic system with a stochastic
component.

Example 2.2.1 Assume that normalized differences dt fol-
low GARCH(1,1) process:

dt |dt−1, dt−2... = htεt,

h2
t = α0 + αd2

t−1 + βh2
t−1,

where ht represents volatility, εt ∼ N (0, 1) are i.i.d. residu-
als (innovations). The maximum likelihood estimator of the

model [4] will produce estimates of the coefficients α̂0, α̂, β̂

and the latent volatility ĥt. The goal of the Filtering step is
to extract the innovation terms, which can be estimated as:

ε̂t =
dt

ĥt
.

We emphasize that volatility ht desrcibed in Example 2.2.1
is different from volatility Σt that was used in the Differenc-
ing step: Σt represents the unconditional volatility of the
prices 4 while ht represents the conditional component of
the volatility designed to capture volatility clustering. Thus,
the actual volatility comes as an interplay between these two
components.

2.3 Uniformization and Dependency Modeling
In applied literature, it is common to measure the level

of dependency between two random variables by the corre-
lation between them: the higher the correlation coefficient,
the more dependent the variables are. A good example of
such way of thinking is linear regression; indeed, the OLS
regression coefficient is nothing but the correlation coeffi-
cient after proper scaling. While there are numerous cases,
when thinking of dependency as correlation is well justified,
there are also situations when a different measure of depen-
dency is needed. The main issue with using the correlation

4Only the current price and time to the expiration are
known, but not the prior price history.



coefficient is that it is not invariant to nonlinear transforma-
tions of the data. For instance, while any random variable x
is perfectly correlated with itself, the correlation will break
if one considers x and x3, although the dependency is still
perfect: each random variable perfectly predicts the other
one.

An alternative approach is to think of the dependency
model between two random variables x and y as being sep-
arate from the marginal distributions of both variables: if
strictly increasing transformations f and g are applied to
both variables (x⇒ f(x), y ⇒ g(y)) the dependency should
not change as the process can easily be reverted. The idea
can be developed further by noting that, if x and y have
cumulative density functions Φ1 and Φ2, one can always
transform them to uniformly distributed random variables
u and v by x ⇒ u = Φ1(x) and y ⇒ v = Φ2(y) while
still preserving our alternative definition of the dependency.
The cumulative density function of the resulting joint dis-
tribution with uniform marginals is known in statistics as
copula [15].

Definition 1. A bivariate copula is a cumulative density
function C of a joint distribution defined on the twodimen-
sional unit cube [0, 1]2 such that both marginal distributions
are uniform on the interval [0, 1].

The observation, that any joint distribution of random
variables can be decomposed to its marginal distributions
and its copula, is due to Sklar [15].

Theorem 1 (Sklar’s Theorem) For any bivariate distri-
bution function H(x, y), let F (x) and G(y) be the univariate
marginal probability distribution functions. Then there ex-
ists a copula C such that

H(x, y) = C(F (x), G(y)).

Moreover, if marginal distributions, F(x) and G(y), are con-
tinuous, the copula function C is unique.

In recent years, copulas gained significant popularity for
dependency modeling in areas ranging from option pric-
ing [6] to decision and risk analysis [7]. In our model, copula
is used to specify dependency between contemporaneous in-
novations for both prediction markets εAt and εBt . Before in-
novations can be passed to copula, they should be stripped of
the marginal distributions and cast to the [0, 1] interval. We
call this step “Uniformization” as its goal is to ensure that
the distribution of innovations is close to uniform. Typically,
a normal distribution of innovations can be assumed, there-
fore uniformization can be performed by passing innovations
through the distribution function of a standard normal dis-
tribution. In some cases, the market can exhibit significant
“fat tails” inconsistent with normality assumption. If so, we
suggest replacing the normal distribution with the Student’s
t-distributition with ν degrees of freedom, where the num-
ber of degrees of freedom can be estimated from the data
using the maximum likelihood approach.

Once the innovations are cast to the [0, 1] interval, a cop-
ula can be applied to determine the probability of co-movement.
The following copulas are frequently used in the applied
work:

1. Product copula is a non-parametric copula specifying
independent evolution of the innovations:

C(u, v) = uv.

Figure 2: Clayton copula, θ = 2.0

If the product copula is adopted in our model, the
evolution of both prediction markets will proceed in-
dependently, therefore it is equivalent to assuming that
P (A ∧B) = P (A)P (B).

2. Gaussian copula Cρ(u, v) is a copula of a bivariate nor-
mal distribution with correlation ρ:

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)).

Note that adopting the Gaussian copula together with
the Gaussian marginal distributions of εAt and εBt is
equivalent to assuming joint normality of both inno-
vations. Nevertheless, the Gaussian copula need not
be used with the Gaussian marginals and can, for in-
stance, be applied when the marginals are t-distributions.

3. Clayton copula is another popular type of a parametric
copula:

Cθ(u, v) =
(
u−θ + v−θ − 1

)− 1
θ
, θ > 0.

It is typically used to model asymmetric dependency
between innovations: as this copula exhibits greater
dependency in the negative tail of the distribution than
in the positive one, the effects of positive news on the
market behavior will be less synchronous than the ef-
fects of negative news.

4. Clayton copula can be inverted to model greater de-
pendency in the positive tail of the distribution:

Cθ(u, v) = 1−
(

(1− u)−θ + (1− v)−θ − 1
)− 1

θ
, θ > 0.

2.4 Inference
Any model, adhering to our framework, can be estimated

using a simple top-down approach: starting from the top
block, estimate its parameters and pass the residuals down
to the next block. The following example illustrates this
idea.

Example 2.4.1 Assume the data on evolution of both con-
tracts until time τ < T is available.

1. Differencing step. Transform all prices pA,Bt into nor-

malized differences dA,Bt =
p
A,B
t −pA,Bt−1

Σ
A,B
t−1

, where ΣA,Bt =



1√
T−tφ

(
Φ−1(pA,Bt )

)
. Perform AR(1) regression to re-

move potential autoregressive behavior

dA,Bt = c+ ϕdA,Bt−1 + ωA,Bt .

Estimated residuals from the regression ω̂A,Bt are passed
to the next step.

2. Filtering step. Run standard GARCH(1,1) estimator

on the input ωA,Bt to remove volatility clustering.

ωA,Bt = hA,Bt εA,Bt ,

hA,Bt

2
= α0 + αωA,Bt−1

2
+ βhA,Bt−1

2
.

Estimated standardized GARCH residuals ε̂A,Bt are passed
to the next step.

3. Uniformization step. No estimation necessary. As-
suming normal distribution of innovations εA,Bt cast
them to uniform:

ut = Φ
(
εAt

)
, vt = Φ

(
εBt

)
.

4. Dependency model. Assuming that dependency between
contemporaneous observations is specified by Clayton’s

copula Cθ(u, v) =
(
u−θ + v−θ − 1

)− 1
θ , the log-likelihood

function is

log L = τ log(1 + θ)−

τ∑
t=1

[
(θ + 1) log(utvt) +

(
1

θ
+ 2

)(
u−θt + v−θt − 1

)]
.

The dependency parameter θ can be estimated using
any optimization method. Figure 2 shows a sample
Clayton copula.

Note that the model configuration used in Example 2.4.1
represents only one of many possible setups. The compo-
nents of the framework are designed to be independent and
pluggable, thus the framework can easily be customized for
needs of a particular application.

2.5 Forecasting
After the model parameters have been estimated, one

needs to forecast into the future, in order to estimate the
probability of the joint event. In most cases, the closed
form representation of the forecast might not be available,
therefore we propose a simulation based approach. The al-
gorithm is given by Algorithm 1. To simplify understanding,
we have formulated the algorithm in terms of Example 2.4.1,
however it can be easily extrapolated to any other model.

The idea of Algorithm 1 is to run the data generation
process from the last observed moment of time τ until the
closing date of the prediction market T . The process is re-
peated L times and the estimate of the joint probability is
obtained as a fraction of times a “hit” occurred - price tra-
jectories for both claims A and B converged to 1. Each price
trajectory is constructed step by step. The process starts by
generating a pair of uniformly distributed innovations ut and
vt, such that the dependency between them is given by the
copula C. The innovations are transformed to have proper
marginal distributions by reversing the Uniformization step

and fed to the Filtering module to update volatilities (or
other latent parameters) and reconstruct the difference se-
ries (or any other series that are the output of the Differ-
encing step). Finally, the Differencing step is reversed to
reconstruct the new price observation for both contracts.

We emphasize, that for practical application of the algo-
rithm, it is essential to ensure that simulated prediction mar-
ket prices converge to 0.0 or 1.0 at time T . Using GARCH
or any other volatility model for stocks alone will not be
enough, as GARCH prices need not converge to anything,
however, if the normalization factor Σt = 1√

T−tφ
(
N −1(pt)

)
is used to model unconditional volatility, convergence will
happen for sufficiently small simulation step.

Algorithm 1 Estimating the probability of the joint event
using Monte-Carlo

L⇐ number of trajectories to generate
H ⇐ 0 {Total number of hits}
for l = 1 to L do

for t = τ + 1 to T do
ut ⇐ uniform random sample on [0, 1]
vt ⇐ sample from C(v|ut) {Now the joint distribution
of (ut, vt) is given by the copula C}
ut ⇐ Φ−1(ut)
vt ⇐ Φ−1(vt) { Reverse the Uniformization step }
hAt ⇐

√
α0 + αωAt−1

2
+ βhAt−1

2

hBt ⇐
√
α0 + αωBt−1

2
+ βhBt−1

2 {Calculate condi-

tional volatilities}
ωAt ⇐ hAt ut
ωBt ⇐ hBt vt {Reverse the Filtering step}
dAt ⇐ ϕdAt−1 + ωAt
dBt ⇐ ϕdBt−1 + ωBt {Reconstruct the new normalized
differences}
pAt ⇐ pAt−1 + dAt ΣAt−1

pBt ⇐ pBt−1 + dBt ΣBt−1 {Reconstruct the new prices}
ΣAt ⇐ 1√

T−tφ
(
N −1(pAt )

)
ΣBt ⇐ 1√

T−tφ
(
N −1(pBt )

)
{Calculate unconditional

volatilities for the next step}
end for
if pAT > 1− ε0 AND pBT > 1− ε0 then
H ⇐ H + 1 {Increase hit count}

end if
P (A ∧B)⇐ H

L
end for

Algorithm 1 assumes that one is able to sample from con-
ditional distribution C(v|u). For that purpose it is sufficient
to know the conditional density of v, which for continuous
density copulas is given by

∂2C
∂u∂v

(u, v)∫
∂2C
∂u∂v

(u, v)du
=

∂2C

∂u∂v
(u, v).

Here we used the fact that, by definition, all copulas have
uniform marginal distributions. For instance, for Clayton
copula, the distribution function of v conditional on u is
given by

C(v|u) =
(
u−θ + v−θ − 1

)− 1
θ
−1

u−θ−1,

and the sampling can be performed by inversion of the dis-
tribution function (sample z uniformly on [0, 1] and return



Variable Min Max Mean Median S.Dev.

Daily dev. -0.882 0.88 0.0003 0 0.018
Returns -0.967 29.333 0.005 0 0.247
Price 0.02 0.983 0.494 0.506 0.348

Table 1: Descriptive Statistics for 51 InTrade con-
tracts

C−1(·|u)(z)).

3. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of

our model on a set of InTrade prediction market contracts.

3.1 Data
Our dataset contained daily observations for a collection

of InTrade prediction market contracts. Intrade is an on-
line Dublin-based trading exchange website founded in 2001.
The trading unit on InTrade is a contract with a typical set-
tlement value of $10, which is measured on a 100 points
scale. To be consistent with our convention that the win-
ning contract pays $1, we renormalized all price data to be in
[0, 1] range, so, for example, a 50 points price of InTrade con-
tract is represented by 0.5 in our dataset. The full dataset
included daily closing price and volume data for a collec-
tion of 901 InTrade contracts obtained by periodic crawling
of InTrade’s website. 5 Detailed description and analysis of
the dataset are provided in [1].

In order to evaluate the quality of the predictions of our
model, the first step was to select a subset of contracts which
can be expected to have sufficient dependency between the
outcomes. In this paper, we report our test for a subsam-
ple of 51 InTrade contracts, where each contract represents
the Democratic Party Nominee winning Electoral College
Votes of a particular state 6 in the 2008 Presidential Elec-
tion. Descriptive statistics for this set of contracts are given
in Table 1. Each contract had exactly 306 daily observations
with the last observation made on November 1st, 2008, sev-
eral days before the Election.

We tested all contracts for weak efficiency by performing
AR(1) regression of daily returns on a constant and the lag
of the return. In 16 out of 51 contracts we found statisti-
cally significant negative serial correlation with coefficient on
the lagged return varying from −0.14 (Louisiana) to −0.35
(Alaska). Further observation has shown that this is an arte-
fact of low liquidity of contracts sufficiently far from expi-
ration: if the illiquid tail of contracts (observations further
than 100 days from the contract expiration) are removed
from consideration, the effect disappears.

3.2 Testing Predictive Power of the Model
The most straightforward approach to testing our model

would be to check if the predictions of our Monte-Carlo algo-
rithm match the reality better than predictions of some base-
line model, like the model assuming that events A and B are
independent. Unfortunately, in such approach we have only
one realized outcome for each event (whether it happened
or not), thus making the sample size too small to make rea-
sonable conclusions. We propose an alternative test which

5InTrade keeps historical data for each contract on the web-
site, however expired contracts disappear from the website
after certain amount of time.
6More precisely, one the fifty states or Washington D.C.

is based on forecasting the conditional probability P (A|B)
rather than the joint one.

Assume the price trajectories for both claims are observed
until time τ . Moreover, one also observes the price trajec-
tory of the second claim until time τ+K < T : pBτ+1, ..., p

B
τ+K .

If our dependency model fits the data well, it can be used
to predict the price pAτ+K better than models based on price
trajectory of the first claim alone. As the model can be
tested with different values of τ for each pair of contracts,
we now have significantly more observations to estimate per-
formance of the model.

In the following, it will be more convenient to count time
relative to the Election day (November 4th, 2008), which is
set to be day zero (T = 0). For instance, t = −3 will rep-
resent November 1st, the last day in our dataset. The data
was split into the training sample and the test sample based
on the time variable: observations t ∈ [−100,−50] were in
the training set, t ∈ [−49,−3] were in the test set 7. There is
significant empirical evidence that people tend to overvalue
small probabilities and undervalue near certainties, i.e., the
so called “favorite-longshot bias” [16], therefore, we further
eliminated contracts that, as of day −50, had price greater
than 0.9 or smaller than 0.1 8. After the elimination only
19 “uncertain” contracts were left. We emphasize that for
the rest of the contracts, the price as of day −50 exactly
predicted the outcome of the contract: for contracts with
p > 0.9 the Democratic Nominee won, and for contracts
with p < 0.1 lost.

The following baseline models were considered:

1. Martingale model (M): price of each contract is a mar-
tingale conditional on prices of both contracts, i.e.,

E
{
pAτ+K

∣∣∣pA0 , ..., pAτ , pB0 ...pBτ+K

}
= pAτ .

Note that this model implies independent evolution of
both prediction markets, in particular, that

P (A ∧B) = p(A)p(B).

2. Price regression (P): Regress pAt on constant and pBt
for t ≤ τ . Predict

pAτ+K = β0 + β1p
B
τ+K .

This is essentially the approach of [3].

3. Return regression (R): Regress rAt,K on constant and

rBt,K for t ≤ τ , where rt,K is the K-day return:

rt,K =
pt − pt−K
pt−K

.

Predict

pAτ+K = (1 + β0 + β1r
B
τ+K)pAτ .

The baseline models were compared against the following
three models from our framework: model with the Gaussian

7The reason that we excluded observations before the day
−100 from consideration is that the market was very inactive
and illiquid that far from the contract expiration, therefore
all models actually perform better if trained on a reduced
dataset.
8Behavior of such contracts is also significantly affected by
microstructure and transaction costs that complicate extrac-
tion of innovation terms.



Figure 3: Mean-squared Error on Test Set

copula (C-N), model with the Clayton copula (C-C) and
model with the inverse Clayton copula (C-IC). All three
models used normalized price differences in the Differenc-
ing step, GARCH(1, 1) in the Filtering step and normal
marginals in the Uniformization step. To ensure sufficient
liquidity (reduce number of no-trade observations), training
of these models was performed using 3-day returns.

To make forecasting problem more interesting than just
forecasting the price tomorrow, we used K = 15, i.e., all
models were asked to forecast the price fifteen days later.
Out of 19 interesting contracts, we have composed all pos-
sible pairs of (different) contracts for which raw correlation
between returns on the training set had an absolute value
of at least ρ0 = 0.3. With these values of parameters, the
resulting test set had 1, 498 observations. To ensure reason-
able performance of Algorithm 1, we used L = 100, i.e., for
each prediction a hundred sample paths were generated.

3.3 Discussion
Mean-squared errors of all six models on the test test are

shown in Figure 3. Using mean-absolute error instead, re-
sults in the same ranking of all six methods. As expected,
the price regression (P) consistently performed the worst,
with mean-squared error of 0.1624 on the test sample, which
is even worse than the result of a naive martingale predictor
M (0.1483). This result provides confirmation for our argu-
ment that price regressions for prediction markets are spu-
rious and should be avoided because of weak out-of-sample
performance.

The return regression (R) has slightly outperformed the
martingale predictor with mean-squared error of 0.1443. The
copula models have performed significantly better with the
best result for the Gaussian copula C-N (0.1193) which has
given almost 20% reduction in the mean-squared error com-
pared to the martingale predictor.

We have tested our results for robustness by trying dif-
ferent aggregation techniques and values of ρ0. Similar but
slightly worse performance results were obtained with copula
models trained on daily returns or 5-day returns. The issue
with daily returns is that there are more zero volume days
in the training set than in the test set as the test set is closer
to the contract expiration. Difference in liquidity between
training and test sets decreases performance of the copula
model on the test set, therefore we recommend using certain
level of aggregation. Using too high level of aggregation is
also undesirable as it reduces information available to the

copula model; for instance, with K = 15 and 3-day aggrega-
tion level, the model will use 5 observations for each single
prediction, while at 5-day aggregation level it will use only
3. Nevertheless, with both daily and 5-day returns, copula
models outperformed the regression of returns and the mar-
tingale predictor. If value of the correlation threshold (ρ0)
is decreased, i.e., the test set is extended to include pairs of
contracts with low correlations, performance of the martin-
gale predictor is not significantly affected, while performance
of the copula models naturally deteriorates as, on average,
each contract in the pair has less information about its coun-
terpart. For instance, with ρ0 = 0.2, the mean-squared er-
ror of the Gaussian copula increases to 0.1252. Across many
different settings, the Gaussian copula model consistently
outperformed two models with asymmetric copulas (C−C
and C− IC), what makes us believe that asymmetric de-
pendencies frequently observed in financial markets, were
not present in our set of prediction market contracts. We
also tried relaxing some of the framework components. In
particular, we found that GARCH(1,1) component had no
significant effect on performance of the copula models and
could be omitted.

3.4 Extracting Business Intelligence
The experiment we described above shows that our frame-

work can be used to construct models outperforming tradi-
tional forecasting techniques such as price or return regres-
sions. In this section, we show that it also can be used to ex-
tract interesting and potentially useful business intelligence.
Using the same sample of Presidential Election contracts, we
ask the question: “Which pairs of states are most similar in
the sense that winning one state significantly increases the
probability of winning the other one?”. A natural ranking
criteria for this question is lift:

L(A|B) =
P (A|B)

P (A)
=

P (A ∧B)

P (A)P (B)
.

We used Gaussian copula from the previous experiment to
estimate dependencies between pairs of states from full his-
torical price data until November 1st, 2008. All contracts
were included except for those that had price smaller than
0.1 or greater than 0.9 as of November 1st. Because some
included contracts were not very liquid, we used weekly ag-
gregation level. Using estimated dependency parameters,
we forecast from November 1st until the date of Elections
to estimate the value P (A∧B). Top lift values obtained are
given in Table 2. One can see, for instance, that winning
South Dakota lifts probability of winning North Dakota by
a factor of two.

Additionally, we repeated the experiment by running all
state contracts against PRESIDENT2008.DEM, the con-
tract on the Democratic Nominee winning the 2008 Pres-
idential Elections. Results are given in Table 3. The market
identified Missouri and Georgia as key predictors, followed
by Montana and Florida.

4. CONCLUSION
In the last decade, prediction markets became popular

decision support tools, employed by corporations to forecast
product launch dates, sales volumes, and other important
variables. Decision support applications of prediction mar-
kets frequently require estimating probabilities of complex,
combinatorial events, and running a combinatorial predic-
tion market is not always feasible. This paper presents a



Contract A P(A) Contract B P(B) P(A|B) Lift

sth.dakota 0.1 nth.dakota 0.29 0.21 2
nth.dakota 0.29 sth.dakota 0.1 0.58 2
sth.carolina 0.11 sth.dakota 0.1 0.19 1.83
sth.dakota 0.1 sth.carolina 0.11 0.19 1.83
sth.carolina 0.11 nth.dakota 0.29 0.18 1.73
nth.dakota 0.29 sth.carolina 0.11 0.5 1.73
westvirginia 0.13 sth.carolina 0.11 0.21 1.63
sth.carolina 0.11 westvirginia 0.13 0.17 1.63
sth.dakota 0.1 westvirginia 0.13 0.17 1.61

westvirginia 0.13 sth.dakota 0.1 0.21 1.61
westvirginia 0.13 georgia 0.29 0.2 1.53

georgia 0.29 westvirginia 0.13 0.44 1.53
sth.dakota 0.1 montana 0.25 0.15 1.49
montana 0.25 sth.dakota 0.1 0.37 1.49

nth.dakota 0.29 montana 0.25 0.4 1.38
montana 0.25 nth.dakota 0.29 0.34 1.38
georgia 0.29 sth.carolina 0.11 0.39 1.36

sth.carolina 0.11 georgia 0.29 0.14 1.36
sth.carolina 0.11 montana 0.25 0.14 1.34

montana 0.25 sth.carolina 0.11 0.33 1.34
... ... ... ... ... ...

Table 2: Pairs of Election Contracts Ranked by Lift
Values

Contract A P(A) Contract B P(B) P(A|B) Lift

president2008 0.84 missouri 0.57 0.93 1.1
president2008 0.84 georgia 0.29 0.92 1.09
president2008 0.84 montana 0.25 0.9 1.07
president2008 0.84 florida 0.69 0.89 1.06
president2008 0.84 arizona 0.19 0.89 1.06
president2008 0.84 indiana 0.38 0.88 1.05
president2008 0.84 ohio 0.82 0.88 1.04
president2008 0.84 westvirginia 0.13 0.88 1.04
president2008 0.84 nevada 0.82 0.88 1.04
president2008 0.84 nth.carolina 0.67 0.88 1.04

Table 3: Top 10 state contracts giving the highest
lift for probability of winning Presidential Elections

framework for an alternative, statistical approaches to pric-
ing complex combinatorial claims. The framework is based
on a simple idea that the observed history of price move-
ments will provide information on the latent dependency be-
tween two events, which in turn can be used to determine the
joint probability of both events happening. The framework
consists of four basic components: differencing, filtering,
uniformization and dependency modeling. The first three
components are designed to extract innovations driving the
price movements of both contracts, while the last step con-
nects contemporaneous innovations via a copula. All com-
ponents of the framework are designed to be independent
and pluggable, thus the framework can easily be customized
for needs of a particular application. The paper proposes a
simple top-down approach to estimating parameters of the
model from historical data and a Monte-Carlo based fore-
casting algorithm that simulates future evolution of the con-
tracts until the expiration date. Experimental evaluation of
our technique on a collection of 51 InTrade contracts rep-
resenting the Democratic Party Nominee winning Electoral
College Votes of a particular state shows that the approach
outperforms traditional forecasting methods such as price
and return regressions and can be used to extract meaning-
ful business intelligence from raw price data.
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