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ABSTRACT
Database selection is an important step when searching over
large numbers of distributed text databases. The database
selection task relies on statistical summaries of the database
contents, which are not typically exported by databases. Pre-
vious research has developed algorithms for constructing an
approximate content summary of a text database from a
small document sample extracted via querying. Unfortu-
nately, Zipf’s law practically guarantees that content sum-
maries built this way for any relatively large database will
fail to cover many low-frequency words. Incomplete content
summaries might negatively affect the database selection pro-
cess, especially for short queries with infrequent words. To
improve the coverage of approximate content summaries, we
build on the observation that topically similar databases tend
to have related vocabularies. Therefore, the approximate
content summaries of topically related databases can com-
plement each other and increase their coverage. Specifically,
we exploit a (given or derived) hierarchical categorization of
the databases and adapt the notion of “shrinkage” –a form
of smoothing that has been used successfully for document
classification– to the content summary construction task. A
thorough evaluation over 315 real web databases as well as
over TREC data suggests that the shrinkage-based content
summaries are substantially more complete than their “un-
shrunk” counterparts. We also describe how to modify ex-
isting database selection algorithms to adaptively decide –at
run-time– whether to apply shrinkage for a query. Our exper-
iments, which rely on TREC data sets, queries, and the asso-
ciated “relevance judgments,” show that our shrinkage-based
approach significantly improves state-of-the-art database se-
lection algorithms, and also outperforms a recently proposed
hierarchical strategy that exploits database classification as
well.

1. INTRODUCTION
A large amount of information available on the web is

stored in text databases that are “hidden” behind search
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interfaces. Often the contents of such databases are non-
crawlable and are hence ignored by search engines such as
Google. As an alternative to querying each database indi-
vidually, metasearchers offer a unified interface for searching
over potentially many text databases simultaneously. Thus,
a metasearcher (1) selects the best databases to search for a
given user query, (2) translates the query into an appropriate
format for each database, and (3) obtains the query results
from each database and merges them into a unified answer.

The database selection step is critical for efficiency, since
a large number of databases might be available even for re-
stricted domains. For example, Conrad et al. [5] report on
an operational application in the legal domain that involves
15,000 real text databases. Database selection typically relies
on short descriptions of the available databases [12, 23, 30,
33]. The content summary of a database usually includes the
words that appear in the database and their document fre-
quency, plus simple additional information such as the size of
the database. Unfortunately, web databases tend to be “un-
cooperative” in that they do not export content summaries,
which complicates the database selection step. Query-based
sampling [1, 16, 24] has emerged as a promising approach
for building (approximate) content summaries for uncoop-
erative databases. Techniques following this approach use
queries to extract a relatively small document sample from
the databases, which is subsequently used to derive content
summaries.

Unfortunately, content summaries constructed using doc-
ument sampling suffer from a sparse-data problem. These
summaries tend to include the most frequent words, but gen-
erally miss many other words that appear only in relatively
few documents:

Example 1. Consider the medical bibliography database
PubMed1. Query [hemophilia] returns 15,158 matches out of
the approximately 12 million citations that PubMed hosts.
In other words, 0.1% of the PubMed documents contain the
word “hemophilia.” A document sample of moderate size is
then likely to miss this “rare” word, and so would a content
summary built from such a document sample. In turn, a
metasearcher might then not identify PubMed as a relevant
database for query [hemophilia], which is problematic. 2

The task of (hierarchical) document classification suffers
from a related data sparseness problem when training data
is insufficient. Based on the observation that words follow re-
lated distributions over topically related documents, McCal-
lum et al. [22] suggested “sharing” training examples across

1http://www.ncbi.nlm.nih.gov/entrez/



close topic categories that are organized in a hierarchy. Their
shrinkage technique compensates for sparse training data for
a category by using training examples from more general cat-
egories.

Interestingly, we can exploit shrinkage for building approx-
imate database summaries as well: when multiple databases
correspond to similar topic categories, they tend to have simi-
lar content summaries [16]. Therefore, the content summaries
of these databases can mutually complement each other. For
example, the content summary of PubMed in Example 1 can
be augmented with words from other “Health”-related da-
tabases, which may contain the word “hemophilia” in their
content summaries.

To apply shrinkage to our problem, each database should
be categorized into a topic hierarchy. This categorization
might be an existing one (e.g., if the databases are classified
in a web directory) or, alternatively, can be derived auto-
matically (e.g., using recently introduced query-probing tech-
niques [13]). As a key contribution of this paper, we introduce
the first technique to build (high-quality) database content
summaries using shrinkage. As another contribution of this
paper, we show how to use shrinkage during database selec-
tion in an adaptive, query-specific way. Our extensive experi-
mental evaluation of our techniques is two-fold. First we com-
pare the quality and completeness of the shrinkage-based con-
tent summaries against their “unshrunk” counterparts, for
the most prominent summary-construction algorithms from
the literature. Our experiments involve text databases from
the TREC (“Text REtrieval Conference”) testbed, as well
as 315 real web databases. Second, we evaluate the im-
pact of shrinkage on database selection accuracy, for several
state-of-the-art database selection algorithms. Our experi-
ments involve the text databases and queries from the TREC
testbed, together with the “relevance judgments” associated
with the queries and the database documents. In short, our
evaluation shows that the new content summaries are highly
complete, and correspondingly help improve the accuracy of
database selection substantially. We compare our method
against state-of-the-art database selection algorithms, includ-
ing a recently introduced hierarchical algorithm that also ex-
ploits database classification information to compensate for
incomplete summaries [16]. Our experiments show a signifi-
cant improvement in performance, achieved efficiently just by
exploiting the database classification information and with-
out increasing the document-sample size.

The rest of the paper is organized as follows. Section 2
gives the necessary background. Section 3 explains the use
of database classification in conjunction with shrinkage to
improve content summary coverage. Section 4 describes an
adaptive database selection algorithm that uses the shrunk
content summaries. Sections 5 and 6 describe the experimen-
tal settings and results. Finally, Sections 7 and 8 describe
related work and conclude the paper.

2. BACKGROUND
This section introduces the notation and necessary back-

ground for this paper. Section 2.1 briefly summarizes how
existing database selection algorithms work, stressing their
reliance on database “content summaries.” Then, Section 2.2
describes how content summaries of “uncooperative” data-
bases can be approximated via query probing, and identifies
opportunities for improving the coverage of such approximate
summaries.

D1, with |D1|=51,500
w p(w|D1)
algorithm 1.4 · 10−1

blood 1.9 · 10−5

hypertension 3.8 · 10−5

. . . . . .

D2, with |D2|=25,730
w p(w|D2)
algorithm 2 · 10−4

blood 4.2 · 10−1

hypertension 3.2 · 10−1

. . . . . .

Table 1: A fragment of the content summaries of two
databases.

2.1 Database Selection Algorithms
Database selection is a crucial step in the metasearching

process. For efficiency, a metasearcher should direct each
query only to a relatively small number of databases. We
now briefly outline how typical database selection algorithms
work and how they depend on database “content summaries”
to make decisions.

Definition 1. The content summary S(D) of a database
D consists of:

• The actual number of documents in D, |D|, and

• For each word w, the fraction of D documents that

include w, or p(w|D) = |d∈D:d contains word w|
|D| . ¦

Table 1 shows a small fraction of the content summaries
of two hypothetical text databases. The first database, D1,
contains articles about Computer Science. According to the
associated content summary, this database consists of 51,500
documents, and the word “algorithm” appears in a large frac-
tion of them. In contrast, this word appears in a small frac-
tion of the documents in database D2, with articles about
Health.

Given database content summaries, a database selection
algorithm estimates the relevance of each database for a given
query (e.g., in terms of the number of matches that each
database is expected to produce for the query):

Example 2. Consider the query [blood hypertension] and
the two databases D1 and D2 of Table 1. A database selection
algorithm may infer that D2 is a promising database for the
query, since each query word appears in a large fraction of the
documents in D2. In contrast, D1 will probably be deemed
not as relevant, since it contains only up to a handful of
documents with each query word. 2

Database selection algorithms work best when the content
summaries are accurate and up to date. The most desirable
scenario is when each database exports these content sum-
maries directly and reliably (e.g., using a protocol such as
STARTS [11]). Unfortunately, no protocol is widely adopted
for web-accessible databases. Hence, other solutions have
been proposed to automate the construction of content sum-
maries from databases that cannot or are not willing to ex-
port such information. We briefly review such approaches
next.

2.2 Query-Based Sampling
Callan and Connell [1] presented an algorithm for building

(approximate) content summaries of text databases that do
not export any “metadata” about their contents. This al-
gorithm starts by extracting a small document sample from
a given database D via single-word queries. The document
sample is then treated as a database and its content sum-
mary is used to approximate that of D’s. A sample of about



300 documents is generally regarded as sufficient to create a
“good” summary [1]. Alternative techniques [16, 24] also use
query-based sampling with the same goal, but with different
querying strategies. In this section, we assume for simplic-
ity a generic (unspecified) document sampling and content
summary approximation strategy, and refer to the resulting
content summaries as follows:

Definition 2. The approximate content summary Ŝ(D)
of a database D consists of:

• An estimate ˆ|D| of the number of documents in D, and

• For each word w, an estimate p̂(w|D) of p(w|D).

The Ŝ(D) estimates are computed from a sample of the doc-
uments in D. 2

Later, in Sections 5 and 6 we describe a variety of spe-
cific sampling and content summary construction strategies
(e.g., [1, 16]) from the literature.

Unfortunately, all efficient techniques for building content
summaries via document sampling suffer from the “sparse
data” problem, since many words in any text database tend
to occur in relatively few documents. Therefore, any doc-
ument sample of reasonably small size will necessarily miss
many words that occur in the associated database a small
number of times. The absence of these words from the con-
tent summaries can negatively affect the performance of da-
tabase selection algorithms for queries that mention such
words. To alleviate this sparse-data problem, we exploit the
observation that incomplete content summaries of topically
related databases can be used to complement each other, as
discussed next.

3. IMPROVING CONTENT SUMMARIES
As argued above, content summaries derived from rela-

tively small document samples are generally incomplete. In
this section we show how we can exploit database category in-
formation to improve the quality of the database summaries.
Specifically, Section 3.1 presents an overview of our general
approach, which builds on the shrinkage ideas from docu-
ment classification [22], while Section 3.2 explains the details
of our method.

3.1 Overview of our Approach
Section 2.2 briefly reviewed sampling-based techniques for

building content summaries from “uncooperative” text da-
tabases. As discussed, low-frequency words tend to be ab-
sent from those summaries. Additionally, other words might
be disproportionately represented in the document samples.
One way to alleviate these problems is to increase the sample
size. Unfortunately, this solution might be impractical, since
it would involve extensive querying of the (remote) databases.
Even more importantly, increases in document sample size
do not tend to result in comparable improvements in con-
tent summary quality [1]. An interesting challenge is then to
improve the quality of the approximate content summaries
without necessarily increasing the document sample size.

This challenge has a counterpart in the problem of hier-
archical document classification. Document classifiers rely
on training data to associate words with categories. Often,
only limited training data is available, which might lead to
poor classifiers. Classifier quality can be increased with more
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hypertension ~ 0.04

Root
hypertension ~ 0.0005

Health
hypertension ~ 0.05

Sports
hypertension ~ 0.0001

Heart
hypertension ~ 0.07

......

D
1

hypertension ~ 0

D
2

hypertension ~ 0.17

Figure 1: A fraction of a classification hierarchy and
content summary statistics for word “hypertension.”

training data, but creating large numbers of training exam-
ples might be prohibitively expensive. As a less expensive
alternative, McCallum et al. [22] suggested “sharing” train-
ing data across related topic categories. Specifically, their
shrinkage approach compensates for sparse training data for
a category by using training examples for more general cate-
gories. For example, the training documents for the “Heart”
category can be augmented with those from the more general
“Health” category. The intuition behind this approach is that
the word distribution in “Health” documents is hopefully re-
lated to the word distribution in the “Heart” documents.

We can apply the same shrinkage principle to our problem,
which requires that databases be categorized into a topic hi-
erarchy. This categorization might be an existing one (e.g.,
if the databases are classified under Open Directory2 or In-
visibleWeb3). Alternatively, databases can be classified au-
tomatically using, for example, the query-probing technique
in [13]. Regardless of how databases are categorized, we can
exploit this categorization to improve content summary cov-
erage. The key intuition behind the use of shrinkage in this
context is that databases under similar topics tend to have
related content summaries, as observed in [16]. Hence, we can
use the approximate content summaries for similarly classi-
fied databases to complement each other, as illustrated in the
following example.

Example 3. Figure 1 shows a fraction of a hierarchical
classification scheme with two databases D1 and D2 classi-
fied under the category “Heart,” and one database D3 clas-
sified under the (higher-level) category “Health.” Assume
that the approximate content summary of D1 does not con-
tain the word “hypertension,” but that this word appears in
many documents in D1. (“Hypertension” might not have ap-

peared in any of the documents sampled to build Ŝ(D1).) In
contrast, “hypertension” appears in a relatively large frac-
tion of D2 documents as reported in the content summary
of D2, a database also classified under the “Heart” category.
Then, by “shrinking” p̂(hypertension|D1) towards the value
of p̂(hypertension|D2), we can capture more closely the ac-

2http://www.dmoz.org
3http://www.invisibleweb.com



tual (and unknown) value of p(hypertension|D1). The new,
“shrunk” value is in effect exploiting the documents sampled
from both D1 and D2. 2

We expect databases under the same category to have sim-
ilar content summaries. Furthermore, even databases classi-
fied under relatively general categories can help to improve
the approximate content summary of a more specific data-
base. Consider database D3, classified under “Health” in the
example in Figure 1. Ŝ(D3) can help complement the content
summary approximation of databases D1 and D2, which are
classified under a subcategory of “Health,” namely “Heart.”
Database D3, however, is a more general database that con-
tains documents in topics other than heart-related. Hence,
the influence of Ŝ(D3) on Ŝ(D1) should perhaps be smaller

than that of, say, Ŝ(D2). In general, and just as for docu-
ment classification [22], each category level might be assigned
a different “weight” during shrinkage. We discuss this and
other specific aspects of our technique next.

3.2 Using Shrinkage over a Topic Hierarchy
We now define more formally how we can use shrinkage for

content summary construction. For this, we first extend the
notion of content summaries to the categories of a classifica-
tion scheme.

Creating Category Content Summaries
The content summary of a category C summarizes the con-
tents of the databases classified under C4.

Definition 3. Consider a category C and the set db(C)
of databases classified under C. The approximate content
summary Ŝ(C) of category C contains, for each word w, an
estimate p̂(w|C) of p(w|C), where p(w|C) is the probability
that a randomly selected document from a database in db(C)

contains the word w. The p̂(w|C) estimates in Ŝ(C) are
derived from the content summaries of databases in db(C)
as5:

p̂(w|C) =

∑
D∈db(C) p̂(w|D) · ˆ|D|

∑
D∈db(C)

ˆ|D|
(1)

Creating Shrunk Content Summaries
Section 3.1 argued that mixing information from content
summaries of topically related databases may lead to more
complete approximate content summaries. We now formally
describe how to use shrinkage for this purpose. In essence,
we create a new content summary for each database D by
“shrinking” the approximate content summary of D, Ŝ(D),
so that it is “closer” to the content summaries S(Ci) of each
category Ci under which D is classified.

Definition 4. Consider a database D classified under
categories C1, . . . , Cm of a hierarchical classification scheme,
with Ci = Parent(Ci+1) for i = 1, . . . , m − 1. Let C0 be a

dummy category whose content summary Ŝ(C0) contains the
same estimate p̂(w|C0) for every word w. Then, the shrunk

content summary R̂(D) of database D consists of:
4Category content summaries were introduced in [16] to de-
fine a hierarchical database selection algorithm.
5An alternative is to define p̂(w|C) =

∑
D∈db(C) p̂(w|D)

|db(C)| , which

“weights” each database equally, regardless of its size. We
implemented this alternative and obtained results that were
virtually identical to those for Equation 1.

• An estimate ˆ|D| of the number of documents in D, and

• For each word w, a shrinkage-based estimate p̂R(w|D)
of p(w|D), defined as:

p̂R(w|D) = λm+1 · p̂(w|D) +

m∑
i=0

λi · p̂(w|Ci) (2)

for a choice of λi values such that
∑m+1

i=0 λi = 1 (see below).2

As described so far, the p̂(w|Ci) values in the Ŝ(Ci) con-
tent summaries are not independent of each other: since
Ci = Parent(Ci+1), all the databases under Ci+1 are also

used to compute Ŝ(Ci) (Definition 3). To avoid this overlap,

before estimating R̂(D) we subtract from Ŝ(Ci) all the data

used to construct Ŝ(Ci+1). Also note that a simple version of
Equation 2 is used for database selection based on language
models [28]. Language model database selection “smoothes”
the p̂(w|D) probabilities with the probability p̂(w|G) for a
“global” category G. Our technique extends this principle
and does multilevel smoothing of p̂(w|D), using the hierar-
chical classification of D. We now describe how to compute
the λi weights used in Equation 2.

Calculating the Category Mixture Weights
We define the λi mixture weights from Equation 2 so as to
make the shrunk content summaries R̂(D) for each database

D as “similar” as possible to both the starting summary Ŝ(D)

and the summary Ŝ(Ci) of each category Ci under which D
is classified. Specifically, we use expectation maximization
(EM) [22] to calculate the λi weights, using the algorithm in
Figure 2. (This is a simple version of the EM algorithm
from [7].) Note that the λm+1 weight associated with a
database (as opposed to with the categories under which it is
classified) is usually highest among the λi’s and so the word-
distribution statistics for the database are not “eclipsed” by
the category statistics.

The “Expectation” step calculates the “likelihood” that
content summary R̂(D) corresponds to each category. The
“Maximization” step weights the λis to maximize the total
likelihood across all categories. The result of the algorithm
is the shrunk content summary R̂(D), which incorporates in-
formation from multiple content summaries and is thus hope-
fully closer to the complete (and unknown) content summary
S(D) of database D.

For illustration purposes, Table 2 reports the computed
mixture weights for two databases that we used in our exper-
iments. As we can see, in both cases the original database
content summary and that of the most specific category for
the database receive the highest weights (0.421 and 0.414, re-
spectively, for the AIDS.org database, and 0.411 and 0.297,
respectively, for the American Economics Association da-
tabase). However, higher-level categories also receive non-
negligible weights.

Finally, note that the λi weights are computed off-line
for each database when the sampling-based database content
summaries are created. This computation does not involve
any overhead at query-processing time.

4. IMPROVING DATABASE SELECTION
As we discussed in the Introduction, database selection is a

critical component of efficient metasearchers. Given a query



Initialization step:
Set each λi to any normalized, non-zero value such that∑m+1

i=0 λi = 1. (For example, λi = 1
m+2

, for every i =

0, . . . , m + 1.)

Create the shrunk content summary R̂(D), using the cur-
rent λi values (Definition 4).

Expectation step:

Calculate the “similarity” βi of each category Ci with R̂(D),
for i = 0, . . . , m:

βi =
∑

w∈Ŝ(D)

λi · p̂(w|Ci)

p̂R(w|D)

Calculate the “similarity” βm+1 of database D with R̂(D):

βm+1 =
∑

w∈Ŝ(D)

λm+1 · p̂(w|D)

p̂R(w|D)

Maximization step:

Maximize the total “similarity” of R̂(D) with the category

content summaries Ŝ(Ci) and with Ŝ(D), by redefining each
λi as follows:

λi =
βi∑m+1

j=0 βj

Modify the shrunk content summary R̂(D) using the cur-
rent λi values.

Termination check:
When calculation of the λi weights converges (within a small

ε) return the “current” shrunk content summary R̂(D).
Otherwise, go to the “Expectation” step.

Figure 2: Using expectation maximization to deter-
mine the λi mixture weights for the shrunk content
summary of a database D.

q, a database selection algorithm assigns a score s(q, D) to
each database D, so that the metasearcher can evaluate (a
suitably modified version of) q over just the databases with
the highest scores. We now show how shrinkage can be used
together with state-of-the-art database selection algorithms
to substantially improve the accuracy of the selection process.

Section 3 introduced a shrinkage-based strategy to com-
plement the incomplete content summary of a database with
the summaries of topically related databases. In principle,
existing database selection algorithms could proceed without
modification and use the shrunk summaries to assign scores
for all queries and databases. However, sometimes shrinkage
might not be beneficial and should not be used. Intuitively,
shrinkage should be used to determine the score s(q, D) for a
query q and a database D only if the “uncertainty” associated
with this score would otherwise be large.

The uncertainty associated with an s(q, D) score depends
on a number of sample-, database-, and query-related fac-
tors. An important factor is the size of the document sample
relative to that of database D. If an approximate summary
Ŝ(D) was derived from a sample that included most of the
documents in D, then this summary is already “sufficiently
complete.” (For example, this situation might arise if D is
a small database.) In this case, shrinkage is not necessary
and might actually be undesirable, since it might introduce
spurious words into the content summary from topically re-

Database Category λ
Uniform 0.075
Root 0.026

AIDS.org Health 0.061
Diseases 0.003
AIDS 0.414
AIDS.org 0.421
Uniform 0.041

American Root 0.041
Economics Science 0.055
Association Social Sciences 0.155

Economics 0.297
American Economics Association 0.411

Table 2: The category mixture weights λi for two
databases.

Input: Query q = [w1, . . . , wn]; databases D1, . . . , Dm

Content Summary Selection step:
For each Di:

For every possible choice of values for d1, . . . , dn (see text):
Compute the probability P that wk appears in
exactly dk documents in Di, for k = 1, . . . , n.

Compute the score s(q, Di) assuming that wk appears
in exactly dk documents in Di, for k = 1, . . . , n.

If the standard deviation of the score distribution
across dk values is larger than its mean

then A(Di) = R̂(Di) // use “shrunk” content summary

else A(Di) = Ŝ(Di) // use “unshrunk” content summary

Scoring step:
For each Di:

Compute s(q, Di) using the A(Di) content summary,
as selected in the “Content Summary Selection” step.

Ranking step:
Rank the databases by decreasing score s(q, Di).

Figure 3: Using shrinkage adaptively for database
selection.

lated (but not identical) databases. Another factor is the
frequency of the query words in the sample used to deter-
mine Ŝ(D). If, say, every word in a query appears in close to
all the sample documents, and the sample is representative of
the entire database contents, then there is little uncertainty
on the distribution of the words over the database at large.
This is also the case for the analogous situation in which every
query word appears in close to no sample documents. In ei-
ther case, shrinkage would provide limited benefit and should
then be avoided. In contrast, for other query-word distribu-
tion scenarios the approximate content summary might not
be sufficient to reliably establish the query-specific score for
the database, in which case shrinkage is desirable.

More formally, consider a query q = [w1, . . . , wn] with n
words w1, . . . , wn, a database D, and an approximate content
summary for D, Ŝ(D), derived from a random sample S of
D. Furthermore, suppose that word wk appears in exactly sk

documents in the sample S. For every possible combination
of values d1, . . . , dn (see below), we compute:

• The probability P that wk appears in exactly dk docu-
ments in D, for k = 1, . . . , n:



P =

n∏

k=1

dγ
k

(
dk
|D|

)sk
(
1− dk

|D|

)|S|−sk

∑|D|
i=0 iγ ·

(
i
|D|

)sk
(
1− i

|D|

)|S|−sk
(3)

where γ is a database-specific constant. (For details,
see Appendix A.)

• The score s(q, D) that the database selection algorithm

of choice would assign to D if p(wk|D) = dk
|D| , for k =

1, . . . , n.

So for each possible combination of values d1, . . . , dn, we com-
pute both the probability of the value combination and the
score that the database selection algorithm would assign to
D for this document frequency combination. Then, we can
approximate the “uncertainty” behind the s(q, D) score by
examining the mean and variance of the database scores over
the different d1, . . . , dn values. This computation can be per-
formed efficiently for a generic database selection algorithm:
given the sample frequencies s1, . . . , sn, a large number of
possible d1, . . . , dn values have virtually zero probability of
occurring, so we can ignore them. Additionally, mean and
variance converge fast, even after examining only a small
number of d1, . . . , dn combinations. Specifically, we examine
random d1, . . . , dn combinations and periodically calculate
the mean and variance of the score distribution. Usually,
after examining just a few hundred random d1, . . . , dn com-
binations, mean and variance converge to a stable value. This
computation can be even faster for a large class of database
selection algorithms that assume independence between the
query words (e.g, [12, 3, 31]). For these algorithms, we can
calculate the variance for each query word separately, and
then combine them into the final score variance.

Figure 3 summarizes the discussion above, and shows how
we can adaptively use shrinkage with an existing database se-
lection algorithm. Specifically, the algorithm takes as input
a query q and a set of databases D1, . . . , Dm. The “Content
Summary Selection” step decides whether to use shrinkage
for each database Di, as discussed above. If the distribution
of possible scores has high variance, then Ŝ(Di) is consid-

ered unreliable and the shrunk content summary R̂(Di) is
used instead. Otherwise, shrinkage is not applied. Then, the
“Scoring” step computes the score s(q, Di) for each database
Di, using the content summary chosen for Di in the “Con-
tent Summary Selection” step. Finally, the “Ranking” step
orders all databases by their final score for the query. The
metasearcher then uses this rank to decide what databases
to search for the query.

5. EXPERIMENTAL SETTING
We now describe the data (Section 5.1), strategies for com-

puting content summaries (Section 5.2), and database selec-
tion algorithms (Section 5.3) that we use in our experiments.

5.1 Data
The shrinkage technique described above relies on a hier-

archical categorization scheme. For our experiments, we use
the subset of the Open Directory Project (ODP) topic hier-
archy from [13]. This portion of ODP consists of 72 nodes
organized in a 4-level hierarchy. To evaluate the algorithms
described in this paper, we use three data sets in conjunction
with the hierarchical classification scheme.

TREC4: This is a set of 100 databases created using TREC-
4 documents [14] and separated into disjoint databases via
clustering using the K-means algorithm, as specified in [31].
By construction, the documents in each database are on
roughly the same topic.
TREC6: This is a set of 100 databases created using TREC-
6 documents [29] and separated into disjoint databases using
the same methodology as for TREC4.
Web: This set contains the top-5 real web databases from
each of the 54 leaf categories of the hierarchy, as ranked in the
Google Directory6, plus other arbitrarily selected web sites,
for a total of 315 databases. The sizes of these databases
range from 100 to about 376,000 documents. Table 3 lists
four example databases. We used the GNU Foundation’s wget
crawler to download the HTML contents of each site, and we
kept only the text from each file by stripping the HTML tags
using the “lynx –dump” command.

For indexing and searching the files in all three data sets we
used Jakarta Lucene,7 an open-source full-text search engine.

5.2 Content Summary Construction Algorithms
Sampling Algorithms: We use two different sampling al-
gorithms from the literature for creating the approximate
content summaries Ŝ(D) of each database D:

• Query-Based Sampling (QBS), as presented in [1]:
We send random, single-word queries to a given data-
base until at least one document is retrieved. Then, we
continue to query the database using the words in the
retrieved documents. Each query retrieves at most four
previously unseen documents. Sampling stops when the
document sample contains 300 documents. In our ex-
periments, sampling also stops when 500 consecutive
queries retrieve no new documents. To minimize the
effect of randomness, we run each experiment over five
QBS document samples for each database and report
average results.

• Focused Probing (FPS), as presented in [16]: In-
stead of sending (pseudo-) randomly picked words as
queries, this algorithm derives queries from a classifier
learned over a topic hierarchy. Thus, queries are associ-
ated with specific topics. For example, a query [breast
cancer] is associated with the category “Health.” We
retrieve the top four previously unseen documents for
each query and, at the same time, keep track of the
number of matches generated by each query. When
the queries related to a category (e.g., “Health”) gen-
erate a large number of matches, probing continues for
its subcategories (e.g., “Diseases” and “Fitness”). The
output of the algorithm is both an approximate con-
tent summary and the classification of the database in
a hierarchical classification scheme.

Frequency and Database Size Estimation: As described
above, QBS and FPS define p̂(w|D) for a word w and da-
tabase D as the fraction of documents containing w in the
sample extracted from D. To better approximate the frac-
tion of documents containing w in the database D, we use
the frequency estimation technique presented in [16] and the
“sample-resample” method from [27] to estimate the size of

6http://directory.google.com/
7http://jakarta.apache.org/lucene/



Database URL Documents Classification
Bartleby http://www.bartleby.com/ 375,734 Root→ Arts→ Literature→ Texts
Java @ Sun http://java.sun.com/ 78,870 Root→ Computers→ Programming→ Java
Math Forum @ Drexel http://mathforum.org/ 29,602 Root→ Science→ Mathematics
Union of European Football Associations http://www.uefa.com/ 28,329 Root→ Sports→ Soccer

Table 3: Some of the real web databases in the Web data set.

D. Both techniques exploit the number of matches that the
queries generate at the database. For our experiments, we
modified the technique in [16] to produce better frequency
estimates. (See [17] for details.) Our experiments consider
the QBS and FPS summaries both with and without this
frequency estimation.
Database Classification: To apply our shrinkage-based
technique we need to classify each database into the 72-node
hierarchy. Unfortunately, such classification is not available
for TREC data, so for the TREC4 and TREC6 data sets we
resort to the probe-based automatic database classification
technique in [13]8. A manual inspection of the classifica-
tion results confirmed that they are generally accurate. For
example, the TREC4 database all-83, with articles about
AIDS, was correctly classified under the “Root→ Health→
Diseases→ AIDS” category. Interestingly, in the (rare) case
in which databases were not classified correctly, “similar”
databases were still classified into the same (incorrect) cat-
egory. For example, all-14, all-21, and all-44 are about
middle-eastern politics and were classified under the “Root→
Science→ Social Sciences→ History” category.

Unlike for TREC4 and TREC6, for which no “external”
classification of the databases is available, for the Web da-
tabases we do not have to rely on query probing for classi-
fication. Instead we can use the categories assigned to the
databases in the Google Directory. For QBS, the classifica-
tion of each database in our data set was indeed derived from
the Google Directory. For FPS, we can either use the (cor-
rect) Google Directory database classification, as for QBS,
or rely on the automatically computed database classifica-
tion that this technique derives during document sampling.
We tried both choices and found only small differences in the
experimental results. Therefore, for conciseness, we only re-
port the FPS results for the automatically derived database
classification [13].

5.3 Database Selection Algorithms
In addition to measuring content summary “quality,” our

evaluation studies the effect of the content summary com-
pleteness on database selection accuracy. Our technique of
Figure 3 is built on top of an underlying “base” database se-
lection algorithm to assign scores to databases. We consider
three well-known such algorithms from the literature9.

• bGlOSS, as described in [12]. Databases are ranked for
a query q by decreasing score s(q, D)=|D|·∏w∈q p̂(w|D).

• CORI, as described in [9]. Databases are ranked for a
query q by decreasing score s(q, D) =

∑
w∈q

0.4+0.6·T ·I
|q| ,

where T = (p̂(w|D)·|D|)/(p̂(w|D)·|D|+50+150· cw(D)
mcw

),

8We adapted the technique in [13] slightly so that each
database is classified under exactly one category.
9Experiments using shrinkage together with ReDDE [27], a
promising, recently proposed database selection algorithm,
remain as interesting future work.

I = log
(

m+0.5
cf(w)

)
/ log (m + 1.0), cf (w) is the number of

databases containing w, m is the number of databases
being ranked, cw(D) is the number of words in D, and
mcw is the mean cw among the databases being ranked.
One potential problem with the use of CORI in con-
junction with shrinkage is that virtually every word has
cf (w) equal to the number of databases in the data set:
every word appears with non-zero probability in every
shrunk content summary. Therefore, when we calcu-
late cf (w) for a word w in our CORI experiments, we
consider w as “present” in a database D only when
round(|D| · p̂R(w|D)) ≥ 1.

• Language Modelling (LM), as described in [28]. Da-
tabases are ranked for a query q by decreasing score
s(q, D) =

∏
w∈q(λ · p̂(w|D) + (1 − λ) · p̂(w|G)). The

LM algorithm is equivalent to the KL-based database
selection method described in [31]. For LM, p(w|D)
is defined differently than in Definition 1. Specifically,

p(w|D) = tf(w,D)∑
i tf(wi,D)

, where tf(w, D) is the total num-

ber of occurrences of w in D. The algorithms described
in Section 3 can be easily adapted to reflect this differ-
ence, by substituting this definition of p(w|D) for that
in Definition 1. LM smoothes the p̂(w|D) probabil-
ity with the probability p̂(w|G) for a “global” category
G. (Our shrinkage technique extends this principle and
does multilevel smoothing of p̂(w|D), using the hierar-
chical classification of D.) In our experiments, we de-
rive the probabilities p̂(w|G) from the “Root” category
summary and we use λ = 0.5 as suggested in [28].

We experimentally evaluate the three database selection al-
gorithms above with three variations: (1) using “unshrunk”
(incomplete) database content summaries extracted via QBS
or FPS ; (2) using shrinkage when appropriate (as discussed
in Figure 3), again over database content summaries ex-
tracted via QBS or FPS ; and (3) using “unshrunk” database
content summaries (extracted via QBS or FPS) that are
“aggregated” for each category as described in [16]. This
last strategy attempts to compensate for content summary
incompleteness by exploiting a categorization of databases,
and hence is close in spirit to our shrinkage-based technique.
However, the technique in [16] does not modify the database
content summaries per se, but rather aggregates them to-
gether into category content summaries. This allows database
selection to proceed hierarchically by exploring the categories
that best match a query according to a “base” algorithm such
as CORI, bGlOSS, or LM [16].

6. EXPERIMENTAL RESULTS
We now report experimental results on the quality of the

content summaries generated by the different techniques (Sec-
tion 6.1), as well as on the associated database selection ac-
curacy (Section 6.2).



6.1 Content Summary Quality
Consider a database D and a content summary A(D) com-

puted using any of the techniques in Section 5.2. We now
evaluate the quality of A(D) in terms of how well it approxi-
mates the “perfect” content summary S(D) –determined by
examining every document in D. In the following definitions,
WA is the set of words that appear in A(D), while WS is the
(complete) set of words that appear in S(D).
Recall: An important property of content summaries is their
coverage of the actual database vocabulary. The weighted
recall (wr) of A(D) with respect to S(D) is defined as wr =∑

w∈WA∩WS
p(w|D)∑

w∈WS
p(w|D)

, which corresponds to the ctf ratio in [1].

This metric gives higher weight to more frequent words. The
shrunk content summaries include (with a non-zero proba-
bility) every word in any content summary. Most words in
any given content summary, however, tend to exhibit a very
low probability. Therefore, to not inflate artificially the recall
results (and conversely, to not hurt artificially the precision
results), we drop from the shrunk content summaries every
word w with round(|D| · p̂R(w|D)) < 1 during evaluation.
Intuitively, we drop from the content summary all the words
that are estimated to appear in less than one document.

Table 4 shows the weighted recall wr for different content
summary construction algorithms. Most methods exhibit
high weighted recall, which shows that document sampling
techniques identify the most frequent words in the database.
Not surprisingly, shrinkage increases the (already high) wr
values and all shrinkage-based methods have close-to-perfect
wr; this improvement is statistically significant in all cases:
a paired t-test [21] showed significance at the 0.01% level.
The improvement for the Web set is higher compared to that
for the TREC4 and TREC6 data sets: the Web set contains
larger databases, and the approximate content summaries
are less complete than the respective approximate content
summaries of TREC4 and TREC6. Our shrinkage technique
becomes increasingly more useful for larger databases.

To understand whether low-frequency words are present in
the approximate and shrunk content summaries, we resort to

the unweighted recall (ur) metric, defined as ur = |WA∩WS |
|WS | .

The ur metric is the fraction of words in a database that are
present in a content summary. Table 5 shows that the shrunk
content summaries have higher unweighted recall as well.

Finally, recall is higher when shrinkage is used in conjunc-
tion with the frequency estimation technique, reviewed in
Section 5.2. This behavior is to be expected: when frequency
estimation is enabled, the words introduced by shrinkage are
close to their real frequencies, and are used in precision and
recall calculations. When frequency estimation is not used,
the estimated frequencies of the same words are often be-
low 0.5, and are therefore not used in precision and recall
calculations.
Precision: A database content summary constructed using
a document sample contains only words that appear in the
database. In contrast, the shrunk content summaries may
include words not in the corresponding databases. To mea-
sure the extent to which “spurious” words are added –with
high weight– by shrinkage in the content summary, we use
the weighted precision (wp) of A(D) with respect to S(D),

wp =
∑

w∈WA∩WS
p̂(w|D)∑

w∈WA
p̂(w|D)

. Table 6 shows that shrinkage de-

creases weighted precision by just 0.8% to 5.7%.
We also report the unweighted precision (up) metric, de-

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.962 0.875
Web QBS Yes 0.976 0.875

FPS No 0.989 0.887
FPS Yes 0.993 0.887
QBS No 0.937 0.918

TREC4 QBS Yes 0.959 0.918
FPS No 0.980 0.972
FPS Yes 0.983 0.972
QBS No 0.959 0.937

TREC6 QBS Yes 0.985 0.937
FPS No 0.979 0.975
FPS Yes 0.982 0.975

Table 4: Weighted recall wr

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.438 0.424
Web QBS Yes 0.489 0.424

FPS No 0.681 0.520
FPS Yes 0.711 0.520
QBS No 0.402 0.347

TREC4 QBS Yes 0.542 0.347
FPS No 0.678 0.599
FPS Yes 0.714 0.599
QBS No 0.549 0.475

TREC6 QBS Yes 0.708 0.475
FPS No 0.731 0.662
FPS Yes 0.784 0.662

Table 5: Unweighted recall ur

fined as up = |WA∩WS |
|WA| . This metric reveals how many

words introduced in a content summary do not appear in
the complete content summary (or, equivalently, in the un-
derlying database). Table 7 reports the results for the up
metric, which show that the shrinkage-based techniques have
unweighted precision that is usually above 90% and always
above 84%.
Word-Ranking Correlation: Precision and recall measure
the accuracy and completeness of A(D) based only on the
presence (or absence) of words in the content summaries.
However, these metrics do not capture the relative “rank”
of words in the content summary according to their associ-
ated probabilities. For this, we rely on the Spearman Rank
Correlation Coefficient, which is also used in [1] to evaluate
content summary quality. When two rankings are identical,
SRCC=1; when they are uncorrelated, SRCC=0; and when
they are in reverse order, SRCC=-1.

Table 8 shows that SRCC is higher for the shrunk content
summaries. In general, SRCC is better for the shrunk than
for the unshrunk content summaries: not only do the shrunk
content summaries have better vocabulary coverage, as the
recall figures show, but also the newly added words tend to
be ranked properly.
Word-Frequency Accuracy: The SRCC metric examines
only the word ranking, otherwise ignoring the values of the
associated estimates. The KL-divergence compares the “sim-
ilarity” of the A(D) estimates against the real values in S(D):

KL =
∑

w∈WA∩WS
p(w|D) · log p(w|D)

p̂(w|D)
, where p(w|D) is de-

fined as for the LM algorithm (see Section 5.3). The KL
metric takes values from 0 to infinity, with 0 indicating that
the two content summaries being compared are equal.

Table 9 shows that shrinkage helps decrease large KL val-
ues. (Recall that lower KL values indicate higher quality
summaries.) This is a characteristic of shrinkage [15]: all
summaries are shrunk towards some “common” content sum-



Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.981 1.000
Web QBS Yes 0.973 1.000

FPS No 0.987 1.000
FPS Yes 0.947 1.000
QBS No 0.992 1.000

TREC4 QBS Yes 0.978 1.000
FPS No 0.987 1.000
FPS Yes 0.984 1.000
QBS No 0.978 1.000

TREC6 QBS Yes 0.943 1.000
FPS No 0.976 1.000
FPS Yes 0.958 1.000

Table 6: Weighted precision wp

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.954 1.000
Web QBS Yes 0.942 1.000

FPS No 0.923 1.000
FPS Yes 0.909 1.000
QBS No 0.965 1.000

TREC4 QBS Yes 0.955 1.000
FPS No 0.901 1.000
FPS Yes 0.856 1.000
QBS No 0.936 1.000

TREC6 QBS Yes 0.847 1.000
FPS No 0.894 1.000
FPS Yes 0.850 1.000

Table 7: Unweighted precision up

mary, which has an “average” distance from all the sum-
maries. This effectively reduces the variance of the esti-
mations and leads to reduced estimation “risk.” However,
shrinkage (moderately) hurts content-summary accuracy in
terms of the KL metric in cases where KL is already low for
the unshrunk summaries. This supports our rationale behind
our adaptive database selection algorithm of Section 4. Our
algorithm attempts to identify the cases where shrinkage is
likely to help general database selection accuracy and avoids
applying shrinkage in other cases.
Evaluation Conclusions: The general conclusion from our
experiments on content summary quality is that shrinkage
drastically improves content summary recall, at the expense
of precision. The high weighted precision of the shrinkage-
based summaries suggests that the spurious words introduced
by shrinkage appear with low weight in the summaries, which
should reduce any potential negative impact on database se-
lection. Next, we present experimental evidence that the
loss in precision ultimately does not hurt, since shrinkage
improves overall database selection accuracy.

6.2 Database Selection Accuracy
The evaluation presented so far focused on the content

summaries. We now turn to the central question of how the
quality of the (approximate) content summaries affects the
output of the database selection algorithms.

Consider a ranking of the databases ~D = D1, . . . , Dm ac-
cording to the scores produced by a database selection al-
gorithm for some query q. To measure the “goodness” or
general “quality” of such a rank, we follow an evaluation
methodology that is prevalent in the information retrieval
community, and consider the number of documents in each
database that are relevant to q, as determined by a human
judge [25]. Intuitively, a good rank for a query includes –at
the top– those databases with the largest number of relevant
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Figure 4: The Rk ratio for CORI over the TREC4
and TREC6 data sets.



Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.904 0.812
Web QBS Yes 0.904 0.812

FPS No 0.917 0.813
FPS Yes 0.917 0.813
QBS No 0.981 0.833

TREC4 QBS Yes 0.981 0.833
FPS No 0.943 0.884
FPS Yes 0.943 0.884
QBS No 0.961 0.865

TREC6 QBS Yes 0.961 0.865
FPS No 0.937 0.905
FPS Yes 0.937 0.905

Table 8: Spearman Correlation Coefficient SRCC

Data Sampling Freq. Shrinkage
Set Method Est. Yes No

QBS No 0.361 0.531
Web QBS Yes 0.382 0.472

FPS No 0.298 0.254
FPS Yes 0.281 0.224
QBS No 0.296 0.300

TREC4 QBS Yes 0.175 0.180
FPS No 0.253 0.203
FPS Yes 0.193 0.118
QBS No 0.305 0.352

TREC6 QBS Yes 0.287 0.354
FPS No 0.223 0.193
FPS Yes 0.301 0.126

Table 9: KL-divergence

documents for the query.
If r(q, Di) denotes the number of Di documents that are

relevant to query q, then A(q, ~D, k) =
∑k

i=1 r(q, Di) mea-
sures the total number of relevant documents among the top-
k databases in ~D. To normalize this measure, we consider a
hypothetical, “perfect” database rank ~DH = Dh1 , . . . , Dhm

in which databases are sorted by their r(q, Dhi) value. (This
is of course unknown to the database selection algorithm.)
Then we define the Rk metric for a query and database

rank ~D as Rk = A(q, ~D,k)

A(q, ~DH ,k)
[12]. A “perfect” ordering of k

databases for a query yields Rk = 1, while a (poor) choice of
k databases with no relevant content results in Rk = 0. We
note that when a database receives the “default” score from
a database selection algorithm (i.e., when the score assigned
to a database for a query is equal to the score assigned to an
empty query) we consider that the database is not selected
for searching. This sometimes results in a database selection
algorithm selecting fewer than k databases for a query.

The Rk metric relies on human-generated relevance judg-
ments for the queries and documents. For our experiments
on database selection accuracy, we focus on the TREC4 and
TREC6 data sets, which include queries and associated rel-
evance judgments. (We do not consider the Web data set
for these experiments because of the lack of relevance judg-
ments for it.) We use queries 201-250 from TREC-4 with the
TREC4 data set and queries 301-350 from TREC-6 with the
TREC6 data set. The TREC-4 queries are long, with 8 to 34
words and an average of 16.75 words per query. The TREC-6
queries are shorter, with 2 to 5 words and an average of 2.75
words per query.

We considered eliminating stopwords (e.g., “the”) from the
queries, as well as applying stemming to the query and do-
cument words (e.g., so that a query [computers] matches
documents with word “computing”). While the results im-
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Figure 5: The Rk ratio for bGlOSS and LM over the
TREC4 and TREC6 data sets.

prove with stopword elimination, a paired t-test showed that
the difference in performance is not statistically significant.
Stemming can help alleviate the data spareseness problem.
We generated content summaries with and without applica-
tion of stemming. While stemming tends to improve per-
formance for small values of k, the results are mixed when
k > 10. Due to space constraints we only report results with
stopword elimination and stemming.

Figure 4 shows results for the CORI database selection al-
gorithm (Section 5.3). We consider both the TREC4 and
TREC6 data sets and queries, as well as the QBS and FPS
content summary construction strategies (Section 5.2). We
consider applying CORI over “unshrunk” content summaries
(QBS-Plain and FPS-Plain), using our adaptive shrinkage-
based strategy (QBS-Shrinkage and FPS-Shrinkage), and us-
ing the hierarchical algorithm presented in [16] (QBS-Hierar-
chical and FPS-Hierarchical) (see Section 5.3). Due to space
constraints, Figure 5 shows only a more limited set of experi-
ments for the bGlOSS and LM database selection algorithms
(Section 5.3). The results that we omit confirm the gen-
eral trends in the reported results. Overall, a paired t-test
shows that QBS-Shrinkage improves the database selection
performance over QBS-Plain, and this improvement is statis-
tically significant (p < 0.05). FPS-Shrinkage also improves
the database selection performance relative to FPS-Plain, but
this improvement is statistically significant only when k < 10.
We now describe the details of our findings.
Shrinkage vs. Plain: The first conclusion from our exper-



iments is that QBS-Shrinkage and FPS-Shrinkage improve
performance compared to QBS-Plain and FPS-Plain, respec-
tively. Shrinkage helps because new words are added in the
content summaries in a database- and category-specific man-
ner. In Table 10 we list the number of times shrinkage was ap-
plied for each database selection algorithm. Since the queries
for TREC6 are shorter, shrinkage was applied comparatively
fewer times for TREC6 than for TREC4.
Shrinkage vs. Hierarchical: QBS-Hierarchical and FPS-
Hierarchical [16] generally outperform their “plain” counter-
parts. This confirms the conclusion in [16] that categoriza-
tion information helps compensate for incomplete summaries.
Exploiting this categorization via shrinkage results in even
higher accuracy: QBS-Shrinkage and FPS-Shrinkage signif-
icantly outperform QBS-Hierarchical and FPS-Hierarchical.
This improvement is due to the “flat” nature of our shrink-
age method: QBS-Shrinkage and FPS-Shrinkage can rank the
databases “globally,” while QBS-Hierarchical and FPS-Hier-
archical make irreversible choices at each category level of
the hierarchy. Even when a chosen category contains only a
small number of databases with relevant documents, the hier-
archical algorithm continues to select (irrelevant) databases
from the (relevant) category. When a query “cuts across”
multiple categories, the hierarchical algorithm might fail to
select the appropriate databases. In contrast, our shrinkage-
based approach can potentially select databases from multi-
ple categories and hence manages to identify the appropriate
databases for a query, no matter if they are similarly classi-
fied or not.
Adaptive vs. Universal Application of Shrinkage: The
strategy in Section 4 decides dynamically when to apply
shrinkage for database selection. To understand whether this
decision step is necessary, we evaluated the performance of
the algorithms when we always decide to use shrinkage (i.e.,

when the R̂(Di) content summary is always chosen in Fig-
ure 3). The only database selection algorithm that performs
better in this case is bGlOSS: unlike CORI and LM, bGlOSS
does not have any form of “smoothing” already built in, so
if a query word is not present in a content summary, the
corresponding database gets a zero score from bGlOSS. In
contrast, CORI and LM handle such cases more gracefully
via smoothing. When we applied shrinkage universally, both
CORI and LM performed worse. For lack of space we do not
report the actual experimental results beyond this discussion.
Frequency Estimation:Frequency estimation (Section 5.2)
considerably improved the performance of CORI, by 20% to
30%, with respect to the case where the raw word frequencies
for the document sample are used. In contrast, frequency
estimation has little effect on the performance of bGlOSS
and LM: bGlOSS and LM rely on probabilities that remain
virtually unaffected after the frequency estimation step, while
CORI relies on document frequencies.
Evaluation Conclusions: A general conclusion from the
database selection experiments is that shrinkage significantly
improves database selection. This improvement is achieved
by just exploiting the topical classification of the databases,
without any additional sampling cost.

7. RELATED WORK
Most database selection algorithms [12, 23, 30, 33, 3, 10,

5, 28, 4, 32] rely on statistical content summaries of the
databases. Recent work by Liu et al. [19] estimates the po-
tential inaccuracy of the database rank produced for a query

Data Sampling Database Shrinkage
Set Method Selection Application

bGlOSS 35.42%
FPS CORI 17.32%

TREC4 LM 15.40%
bGlOSS 78.12%

QBS CORI 15.68%
LM 17.32%
bGlOSS 33.43%

FPS CORI 13.12%
TREC6 LM 12.78%

bGlOSS 58.94%
QBS CORI 14.32%

LM 11.73%

Table 10: Percentage of query-database pairs for
which shrinkage was applied.

by a database selection algorithm. If this inaccuracy is un-
acceptably large, then the query is dynamically evaluated on
a few carefully chosen databases to reduce the uncertainty
associated with the database rank. This work does not take
content-summary accuracy into consideration. In contrast,
we address the scenario where summaries are derived from
document samples –and are hence incomplete– and decide
dynamically whether shrinkage should be applied, without
actually querying databases during database selection.

To extract content summaries from “uncooperative” da-
tabases, Callan et al. [1, 2] presented the QBS technique
(reviewed in Section 2.2), while in our previous work [16] we
introduced the FPS technique (reviewed in Section 5.2). We
used both QBS and FPS in our experimental evaluation in
Section 6. Craswell et al. [6] compared database selection
algorithms in the presence of incomplete content summaries,
extracted using document sampling, and observed that the
performance of the algorithms deteriorated with respect to
their behavior over complete summaries.

Xu and Croft [31] and Larkey et al. [18] show that orga-
nizing documents by topic helps improve database selection
accuracy. Other database selection algorithms rely on hierar-
chical classification schemes –mostly for efficiency– to direct
queries to appropriate categories of the hierarchy [8, 26, 12,
4, 32].

Our previous work in [16] is closest to this paper and
shows that a hierarchical classification scheme helps com-
pensate for the incompleteness of the extracted content sum-
maries. In this paper, we build on this observation and gen-
erate “shrunk” content summaries that can be used subse-
quently by any flat (and hence more flexible) database selec-
tion algorithm. In Section 6 we experimentally compared our
shrinkage-based technique against the hierarchical database
selection algorithm from [16].

Our content summary construction technique is based on
the work by McCallum et al. [22], who introduced a shrinkage-
based approach for hierarchical document classification. We
adapted their approach to our problem; see Section 3.

8. CONCLUSION
Database selection is critical to building efficient meta-

searchers that interact with potentially large numbers of da-
tabases. Exhaustively searching all available databases to
answer each query is impractical (or even not possible) in
increasingly common scenarios. In this paper, we showed
how to improve the performance of database selection algo-
rithms in the realistic case where complete database content



summaries are not available. In such scenarios, content sum-
maries need to be derived from relatively small document
samples, which results in incomplete summaries that could
hurt the performance of database selection algorithms. To al-
leviate this degradation in performance, our method exploits
content summaries of similarly classified databases and com-
bines them in a principled manner using “shrinkage.” The
shrinkage-based content summaries are more complete than
their “unshrunk” counterparts and can substantially improve
the accuracy of database selection. Our shrinkage-based tech-
nique achieves this performance gain efficiently, without re-
quiring any increase in the size of the document samples.
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A. ESTIMATING SCORE DISTRIBUTIONS
Section 4 discussed how to estimate the “uncertainty” as-

sociated with a database score for a query. Specifically, this
estimate relied on the probability P of the different possible
query keyword frequencies. To compute P , we assume in-
dependence of the words in the sample: P is a product of
the p(dk|sk) values, defined in turn as the probability that
wk occurs in dk documents in D given that it occurs in sk

documents in S. Using the Bayes rule, we have p(dk|sk) =
p(sk|dk)p(dk)

∑|D|
i=0 p(di)p(sk|di)

. To compute p(sk|dk), we assume that the

presence of each word wk follows a binomial distribution
over the S documents, with |S| trials and probability of suc-

cess dk
|D| for every trial. Then, p(sk|dk) =

(|S|
sk

)
( dk
|D| )

sk (1 −
dk
|D| )

|S|−sk . To compute p(dk) we use the well-known fact that

the distribution of words in text databases tends to follow a
power law [20]: approximately cfγ words in a database have
frequency f , where c and γ are database-specific constants,

computed as described in [17]. Then, p(dk) =
cd

γ
k∑|D|

i=1 ciγ
.


